datacipen commited on
Commit
6b80cf7
1 Parent(s): db28559

Update main.py

Browse files
Files changed (1) hide show
  1. main.py +23 -2
main.py CHANGED
@@ -59,7 +59,10 @@ vectorstore = PineconeVectorStore(
59
  index_name=index_name, embedding=embeddings
60
  )
61
  retriever = vectorstore.as_retriever(search_type="similarity_score_threshold", search_kwargs={"score_threshold": .7, "k": 150,"filter": {'categorie': {'$eq': 'bibliographie-OPP-DGDIN'}}})
62
-
 
 
 
63
  @cl.on_chat_start
64
  async def on_chat_start():
65
  await cl.Message(f"> REVIEWSTREAM").send()
@@ -163,7 +166,6 @@ async def on_message(message: cl.Message):
163
  self.sources.add(source_page_pair) # Add unique pairs to the set
164
 
165
  def on_llm_end(self, response, *, run_id, parent_run_id, **kwargs):
166
- if len(self.sources):
167
  sources_text = "\n".join([f"{source}#page={page}" for source, page in self.sources])
168
  self.msg.elements.append(
169
  cl.Text(name="Sources", content=sources_text, display="inline")
@@ -182,6 +184,25 @@ async def on_message(message: cl.Message):
182
  answer = results["answer"]
183
 
184
  await cl.Message(content=answer).send()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
185
  #await msg.send()
186
  #memory.chat_memory.add_user_message(message.content)
187
  #memory.chat_memory.add_ai_message(msg.content)
 
59
  index_name=index_name, embedding=embeddings
60
  )
61
  retriever = vectorstore.as_retriever(search_type="similarity_score_threshold", search_kwargs={"score_threshold": .7, "k": 150,"filter": {'categorie': {'$eq': 'bibliographie-OPP-DGDIN'}}})
62
+ #search = vectorstore.similarity_search(query,k=50, filter={"categorie": {"$eq": "bibliographie-OPP-DGDIN"}, 'Source': {'$eq': 'Source : Persée'}})
63
+ search = vectorstore.similarity_search(query,k=50, filter={"categorie": {"$eq": "bibliographie-OPP-DGDIN"}})
64
+ cl.user_session.set("search", search)
65
+
66
  @cl.on_chat_start
67
  async def on_chat_start():
68
  await cl.Message(f"> REVIEWSTREAM").send()
 
166
  self.sources.add(source_page_pair) # Add unique pairs to the set
167
 
168
  def on_llm_end(self, response, *, run_id, parent_run_id, **kwargs):
 
169
  sources_text = "\n".join([f"{source}#page={page}" for source, page in self.sources])
170
  self.msg.elements.append(
171
  cl.Text(name="Sources", content=sources_text, display="inline")
 
184
  answer = results["answer"]
185
 
186
  await cl.Message(content=answer).send()
187
+ if cl.user_session.get("search"):
188
+ test = []
189
+ sources_text = ""
190
+ count = 0
191
+ search = cl.user_session.get("search")
192
+ for i in range(0,len(search)):
193
+ if search[i].metadata['Lien'] not in test:
194
+ if count <= 15:
195
+ count = count + 1
196
+ test.append(search[i].metadata['Lien'])
197
+ sources_text = sources_text + "<a href='" + search[i].metadata['Lien'] + "'>" + search[i].metadata['Titre'] + '</a>, ' + search[i].metadata['Auteurs'] + ', ' + search[i].metadata['Lien'] + "\n"
198
+ elements = [
199
+ cl.Text(name="Sources", content=sources_text, display="inline")
200
+ ]
201
+
202
+ await cl.Message(
203
+ content="Sources : ",
204
+ elements=elements,
205
+ ).send()
206
  #await msg.send()
207
  #memory.chat_memory.add_user_message(message.content)
208
  #memory.chat_memory.add_ai_message(msg.content)