Spaces:
Runtime error
Runtime error
dataroadmap
commited on
Commit
•
02cae1b
1
Parent(s):
f66b5a2
updated BAM models
Browse files- ttyd_functions.py +376 -0
ttyd_functions.py
ADDED
@@ -0,0 +1,376 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import datetime
|
2 |
+
import gradio as gr
|
3 |
+
import time
|
4 |
+
import uuid
|
5 |
+
import openai
|
6 |
+
from langchain.embeddings import OpenAIEmbeddings
|
7 |
+
from langchain.vectorstores import Chroma
|
8 |
+
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
9 |
+
from langchain.embeddings import SentenceTransformerEmbeddings
|
10 |
+
|
11 |
+
import os
|
12 |
+
from langchain.document_loaders import WebBaseLoader, TextLoader, Docx2txtLoader, PyMuPDFLoader, UnstructuredPowerPointLoader
|
13 |
+
from whatsapp_chat_custom import WhatsAppChatLoader # use this instead of from langchain.document_loaders import WhatsAppChatLoader
|
14 |
+
|
15 |
+
from collections import deque
|
16 |
+
import re
|
17 |
+
from bs4 import BeautifulSoup
|
18 |
+
import requests
|
19 |
+
from urllib.parse import urlparse
|
20 |
+
import mimetypes
|
21 |
+
from pathlib import Path
|
22 |
+
import tiktoken
|
23 |
+
import gdown
|
24 |
+
|
25 |
+
from langchain.chat_models import ChatOpenAI
|
26 |
+
from langchain import OpenAI
|
27 |
+
|
28 |
+
from ibm_watson_machine_learning.metanames import GenTextParamsMetaNames as GenParams
|
29 |
+
from ibm_watson_machine_learning.foundation_models.utils.enums import DecodingMethods
|
30 |
+
from ibm_watson_machine_learning.foundation_models import Model
|
31 |
+
from ibm_watson_machine_learning.foundation_models.extensions.langchain import WatsonxLLM
|
32 |
+
|
33 |
+
|
34 |
+
import genai
|
35 |
+
from genai.extensions.langchain import LangChainInterface
|
36 |
+
from genai.schemas import GenerateParams
|
37 |
+
|
38 |
+
# Regex pattern to match a URL
|
39 |
+
HTTP_URL_PATTERN = r'^http[s]*://.+'
|
40 |
+
|
41 |
+
mimetypes.init()
|
42 |
+
media_files = tuple([x for x in mimetypes.types_map if mimetypes.types_map[x].split('/')[0] in ['image', 'video', 'audio']])
|
43 |
+
filter_strings = ['/email-protection#']
|
44 |
+
|
45 |
+
def getOaiCreds(key):
|
46 |
+
key = key if key else 'Null'
|
47 |
+
return {'service': 'openai',
|
48 |
+
'oai_key' : key
|
49 |
+
}
|
50 |
+
|
51 |
+
|
52 |
+
def getBamCreds(key):
|
53 |
+
key = key if key else 'Null'
|
54 |
+
return {'service': 'bam',
|
55 |
+
'bam_creds' : genai.Credentials(key, api_endpoint='https://bam-api.res.ibm.com/v1')
|
56 |
+
}
|
57 |
+
|
58 |
+
|
59 |
+
def getWxCreds(key, p_id):
|
60 |
+
key = key if key else 'Null'
|
61 |
+
p_id = p_id if p_id else 'Null'
|
62 |
+
return {'service': 'watsonx',
|
63 |
+
'credentials' : {"url": "https://us-south.ml.cloud.ibm.com", "apikey": key },
|
64 |
+
'project_id': p_id
|
65 |
+
}
|
66 |
+
|
67 |
+
def getPersonalBotApiKey():
|
68 |
+
if os.getenv("OPENAI_API_KEY"):
|
69 |
+
return getOaiCreds(os.getenv("OPENAI_API_KEY"))
|
70 |
+
elif os.getenv("WX_API_KEY") and os.getenv("WX_PROJECT_ID"):
|
71 |
+
return getWxCreds(os.getenv("WX_API_KEY"), os.getenv("WX_PROJECT_ID"))
|
72 |
+
elif os.getenv("BAM_API_KEY"):
|
73 |
+
return getBamCreds(os.getenv("BAM_API_KEY"))
|
74 |
+
else:
|
75 |
+
return {}
|
76 |
+
|
77 |
+
|
78 |
+
|
79 |
+
def getOaiLlm(temp, modelNameDD, api_key_st):
|
80 |
+
modelName = modelNameDD.split('(')[0].strip()
|
81 |
+
# check if the input model is chat model or legacy model
|
82 |
+
try:
|
83 |
+
ChatOpenAI(openai_api_key=api_key_st['oai_key'], temperature=0,model_name=modelName,max_tokens=1).predict('')
|
84 |
+
llm = ChatOpenAI(openai_api_key=api_key_st['oai_key'], temperature=float(temp),model_name=modelName)
|
85 |
+
except:
|
86 |
+
OpenAI(openai_api_key=api_key_st['oai_key'], temperature=0,model_name=modelName,max_tokens=1).predict('')
|
87 |
+
llm = OpenAI(openai_api_key=api_key_st['oai_key'], temperature=float(temp),model_name=modelName)
|
88 |
+
return llm
|
89 |
+
|
90 |
+
|
91 |
+
MAX_NEW_TOKENS = 1024
|
92 |
+
TOP_K = None
|
93 |
+
TOP_P = 1
|
94 |
+
|
95 |
+
def getWxLlm(temp, modelNameDD, api_key_st):
|
96 |
+
modelName = modelNameDD.split('(')[0].strip()
|
97 |
+
wxModelParams = {
|
98 |
+
GenParams.DECODING_METHOD: DecodingMethods.SAMPLE,
|
99 |
+
GenParams.MAX_NEW_TOKENS: MAX_NEW_TOKENS,
|
100 |
+
GenParams.TEMPERATURE: float(temp),
|
101 |
+
GenParams.TOP_K: TOP_K,
|
102 |
+
GenParams.TOP_P: TOP_P
|
103 |
+
}
|
104 |
+
model = Model(
|
105 |
+
model_id=modelName,
|
106 |
+
params=wxModelParams,
|
107 |
+
credentials=api_key_st['credentials'], project_id=api_key_st['project_id'])
|
108 |
+
llm = WatsonxLLM(model=model)
|
109 |
+
return llm
|
110 |
+
|
111 |
+
|
112 |
+
def getBamLlm(temp, modelNameDD, api_key_st):
|
113 |
+
modelName = modelNameDD.split('(')[0].strip()
|
114 |
+
parameters = GenerateParams(decoding_method="sample", max_new_tokens=MAX_NEW_TOKENS, temperature=float(temp), top_k=TOP_K, top_p=TOP_P)
|
115 |
+
llm = LangChainInterface(model=modelName, params=parameters, credentials=api_key_st['bam_creds'])
|
116 |
+
return llm
|
117 |
+
|
118 |
+
|
119 |
+
def get_hyperlinks(url):
|
120 |
+
try:
|
121 |
+
reqs = requests.get(url)
|
122 |
+
if not reqs.headers.get('Content-Type').startswith("text/html") or 400<=reqs.status_code<600:
|
123 |
+
return []
|
124 |
+
soup = BeautifulSoup(reqs.text, 'html.parser')
|
125 |
+
except Exception as e:
|
126 |
+
print(e)
|
127 |
+
return []
|
128 |
+
|
129 |
+
hyperlinks = []
|
130 |
+
for link in soup.find_all('a', href=True):
|
131 |
+
hyperlinks.append(link.get('href'))
|
132 |
+
|
133 |
+
return hyperlinks
|
134 |
+
|
135 |
+
|
136 |
+
# Function to get the hyperlinks from a URL that are within the same domain
|
137 |
+
def get_domain_hyperlinks(local_domain, url):
|
138 |
+
clean_links = []
|
139 |
+
for link in set(get_hyperlinks(url)):
|
140 |
+
clean_link = None
|
141 |
+
|
142 |
+
# If the link is a URL, check if it is within the same domain
|
143 |
+
if re.search(HTTP_URL_PATTERN, link):
|
144 |
+
# Parse the URL and check if the domain is the same
|
145 |
+
url_obj = urlparse(link)
|
146 |
+
if url_obj.netloc.replace('www.','') == local_domain.replace('www.',''):
|
147 |
+
clean_link = link
|
148 |
+
|
149 |
+
# If the link is not a URL, check if it is a relative link
|
150 |
+
else:
|
151 |
+
if link.startswith("/"):
|
152 |
+
link = link[1:]
|
153 |
+
elif link.startswith(("#", '?', 'mailto:')):
|
154 |
+
continue
|
155 |
+
|
156 |
+
if 'wp-content/uploads' in url:
|
157 |
+
clean_link = url+ "/" + link
|
158 |
+
else:
|
159 |
+
clean_link = "https://" + local_domain + "/" + link
|
160 |
+
|
161 |
+
if clean_link is not None:
|
162 |
+
clean_link = clean_link.strip().rstrip('/').replace('/../', '/')
|
163 |
+
|
164 |
+
if not any(x in clean_link for x in filter_strings):
|
165 |
+
clean_links.append(clean_link)
|
166 |
+
|
167 |
+
# Return the list of hyperlinks that are within the same domain
|
168 |
+
return list(set(clean_links))
|
169 |
+
|
170 |
+
# this function will get you a list of all the URLs from the base URL
|
171 |
+
def crawl(url, local_domain, prog=None):
|
172 |
+
# Create a queue to store the URLs to crawl
|
173 |
+
queue = deque([url])
|
174 |
+
|
175 |
+
# Create a set to store the URLs that have already been seen (no duplicates)
|
176 |
+
seen = set([url])
|
177 |
+
|
178 |
+
# While the queue is not empty, continue crawling
|
179 |
+
while queue:
|
180 |
+
# Get the next URL from the queue
|
181 |
+
url_pop = queue.pop()
|
182 |
+
# Get the hyperlinks from the URL and add them to the queue
|
183 |
+
for link in get_domain_hyperlinks(local_domain, url_pop):
|
184 |
+
if link not in seen:
|
185 |
+
queue.append(link)
|
186 |
+
seen.add(link)
|
187 |
+
if len(seen)>=100:
|
188 |
+
return seen
|
189 |
+
if prog is not None: prog(1, desc=f'Crawling: {url_pop}')
|
190 |
+
|
191 |
+
return seen
|
192 |
+
|
193 |
+
|
194 |
+
def ingestURL(documents, url, crawling=True, prog=None):
|
195 |
+
url = url.rstrip('/')
|
196 |
+
# Parse the URL and get the domain
|
197 |
+
local_domain = urlparse(url).netloc
|
198 |
+
if not (local_domain and url.startswith('http')):
|
199 |
+
return documents
|
200 |
+
print('Loading URL', url)
|
201 |
+
if crawling:
|
202 |
+
# crawl to get other webpages from this URL
|
203 |
+
if prog is not None: prog(0, desc=f'Crawling: {url}')
|
204 |
+
links = crawl(url, local_domain, prog)
|
205 |
+
if prog is not None: prog(1, desc=f'Crawling: {url}')
|
206 |
+
else:
|
207 |
+
links = set([url])
|
208 |
+
# separate pdf and other links
|
209 |
+
c_links, pdf_links = [], []
|
210 |
+
for x in links:
|
211 |
+
if x.endswith('.pdf'):
|
212 |
+
pdf_links.append(x)
|
213 |
+
elif not x.endswith(media_files):
|
214 |
+
c_links.append(x)
|
215 |
+
|
216 |
+
# Clean links loader using WebBaseLoader
|
217 |
+
if prog is not None: prog(0.5, desc=f'Ingesting: {url}')
|
218 |
+
if c_links:
|
219 |
+
loader = WebBaseLoader(list(c_links))
|
220 |
+
documents.extend(loader.load())
|
221 |
+
|
222 |
+
# remote PDFs loader
|
223 |
+
for pdf_link in list(pdf_links):
|
224 |
+
loader = PyMuPDFLoader(pdf_link)
|
225 |
+
doc = loader.load()
|
226 |
+
for x in doc:
|
227 |
+
x.metadata['source'] = loader.source
|
228 |
+
documents.extend(doc)
|
229 |
+
|
230 |
+
return documents
|
231 |
+
|
232 |
+
def ingestFiles(documents, files_list, prog=None):
|
233 |
+
for fPath in files_list:
|
234 |
+
doc = None
|
235 |
+
if fPath.endswith('.pdf'):
|
236 |
+
doc = PyMuPDFLoader(fPath).load()
|
237 |
+
elif fPath.endswith('.txt') and not 'WhatsApp Chat with' in fPath:
|
238 |
+
doc = TextLoader(fPath).load()
|
239 |
+
elif fPath.endswith(('.doc', 'docx')):
|
240 |
+
doc = Docx2txtLoader(fPath).load()
|
241 |
+
elif 'WhatsApp Chat with' in fPath and fPath.endswith('.csv'): # Convert Whatsapp TXT files to CSV using https://whatstk.streamlit.app/
|
242 |
+
doc = WhatsAppChatLoader(fPath).load()
|
243 |
+
elif fPath.endswith(('.ppt', '.pptx')):
|
244 |
+
doc = UnstructuredPowerPointLoader(fPath).load()
|
245 |
+
else:
|
246 |
+
pass
|
247 |
+
|
248 |
+
if doc is not None and doc[0].page_content:
|
249 |
+
if prog is not None: prog(0.9, desc='Loaded file: '+fPath.rsplit('/')[0])
|
250 |
+
print('Loaded file:', fPath)
|
251 |
+
documents.extend(doc)
|
252 |
+
return documents
|
253 |
+
|
254 |
+
|
255 |
+
def data_ingestion(inputDir=None, file_list=[], url_list=[], gDriveFolder='', prog=None):
|
256 |
+
documents = []
|
257 |
+
# Ingestion from Google Drive Folder
|
258 |
+
if gDriveFolder:
|
259 |
+
opFolder = './gDriveDocs/'
|
260 |
+
gdown.download_folder(url=gDriveFolder, output=opFolder, quiet=True)
|
261 |
+
files = [str(x) for x in Path(opFolder).glob('**/*')]
|
262 |
+
documents = ingestFiles(documents, files, prog)
|
263 |
+
# Ingestion from Input Directory
|
264 |
+
if inputDir is not None:
|
265 |
+
files = [str(x) for x in Path(inputDir).glob('**/*')]
|
266 |
+
documents = ingestFiles(documents, files, prog)
|
267 |
+
if file_list:
|
268 |
+
documents = ingestFiles(documents, file_list, prog)
|
269 |
+
# Ingestion from URLs - also try https://python.langchain.com/docs/integrations/document_loaders/recursive_url_loader
|
270 |
+
if url_list:
|
271 |
+
for url in url_list:
|
272 |
+
documents = ingestURL(documents, url, prog=prog)
|
273 |
+
|
274 |
+
# Cleanup documents
|
275 |
+
for x in documents:
|
276 |
+
if 'WhatsApp Chat with' not in x.metadata['source']:
|
277 |
+
x.page_content = x.page_content.strip().replace('\n', ' ').replace('\\n', ' ').replace(' ', ' ')
|
278 |
+
|
279 |
+
# print(f"Total number of documents: {len(documents)}")
|
280 |
+
return documents
|
281 |
+
|
282 |
+
|
283 |
+
def split_docs(documents):
|
284 |
+
# Splitting and Chunks
|
285 |
+
text_splitter = RecursiveCharacterTextSplitter(chunk_size=2500, chunk_overlap=250) # default chunk size of 4000 makes around 1k tokens per doc. with k=4, this means 4k tokens input to LLM.
|
286 |
+
docs = text_splitter.split_documents(documents)
|
287 |
+
return docs
|
288 |
+
|
289 |
+
|
290 |
+
def getSourcesFromMetadata(metadata, sourceOnly=True, sepFileUrl=True):
|
291 |
+
# metadata: list of metadata dict from all documents
|
292 |
+
setSrc = set()
|
293 |
+
for x in metadata:
|
294 |
+
metadataText = '' # we need to convert each metadata dict into a string format. This string will be added to a set
|
295 |
+
if x is not None:
|
296 |
+
# extract source first, and then extract all other items
|
297 |
+
source = x['source']
|
298 |
+
source = source.rsplit('/',1)[-1] if 'http' not in source else source
|
299 |
+
notSource = []
|
300 |
+
for k,v in x.items():
|
301 |
+
if v is not None and k!='source' and k in ['page']:
|
302 |
+
notSource.extend([f"{k}: {v}"])
|
303 |
+
metadataText = ', '.join([f'source: {source}'] + notSource) if sourceOnly==False else source
|
304 |
+
setSrc.add(metadataText)
|
305 |
+
|
306 |
+
if sepFileUrl:
|
307 |
+
src_files = '\n'.join(([f"{i+1}) {x}" for i,x in enumerate(sorted([x for x in setSrc if 'http' not in x], key=str.casefold))]))
|
308 |
+
src_urls = '\n'.join(([f"{i+1}) {x}" for i,x in enumerate(sorted([x for x in setSrc if 'http' in x], key=str.casefold))]))
|
309 |
+
|
310 |
+
src_files = 'Files:\n'+src_files if src_files else ''
|
311 |
+
src_urls = 'URLs:\n'+src_urls if src_urls else ''
|
312 |
+
newLineSep = '\n\n' if src_files and src_urls else ''
|
313 |
+
|
314 |
+
return src_files + newLineSep + src_urls , len(setSrc)
|
315 |
+
else:
|
316 |
+
src_docs = '\n'.join(([f"{i+1}) {x}" for i,x in enumerate(sorted(list(setSrc), key=str.casefold))]))
|
317 |
+
return src_docs, len(setSrc)
|
318 |
+
|
319 |
+
def getEmbeddingFunc(creds):
|
320 |
+
# OpenAI key used
|
321 |
+
if creds.get('service')=='openai':
|
322 |
+
embeddings = OpenAIEmbeddings(openai_api_key=creds.get('oai_key','Null'))
|
323 |
+
# WX key used
|
324 |
+
elif creds.get('service')=='watsonx' or creds.get('service')=='bam':
|
325 |
+
# testModel = Model(model_id=ModelTypes.FLAN_UL2, credentials=creds['credentials'], project_id=creds['project_id']) # test the API key
|
326 |
+
# del testModel
|
327 |
+
embeddings = SentenceTransformerEmbeddings(model_name="all-MiniLM-L6-v2") # for now use OpenSource model for embedding as WX doesnt have any embedding model
|
328 |
+
else:
|
329 |
+
raise Exception('Error: Invalid or None Credentials')
|
330 |
+
return embeddings
|
331 |
+
|
332 |
+
def getVsDict(embeddingFunc, docs, vsDict={}):
|
333 |
+
# create chroma client if doesnt exist
|
334 |
+
if vsDict.get('chromaClient') is None:
|
335 |
+
vsDict['chromaDir'] = './vecstore/'+str(uuid.uuid1())
|
336 |
+
vsDict['chromaClient'] = Chroma(embedding_function=embeddingFunc, persist_directory=vsDict['chromaDir'])
|
337 |
+
# clear chroma client before adding new docs
|
338 |
+
if vsDict['chromaClient']._collection.count()>0:
|
339 |
+
vsDict['chromaClient'].delete(vsDict['chromaClient'].get()['ids'])
|
340 |
+
# add new docs to chroma client
|
341 |
+
vsDict['chromaClient'].add_documents(docs)
|
342 |
+
print('vectorstore count:',vsDict['chromaClient']._collection.count(), 'at', datetime.datetime.now().strftime('%Y-%m-%d %H:%M:%S'))
|
343 |
+
return vsDict
|
344 |
+
|
345 |
+
# used for Hardcoded documents only - not uploaded by user (userData_vecStore is separate function)
|
346 |
+
def localData_vecStore(embKey={}, inputDir=None, file_list=[], url_list=[], vsDict={}, gGrUrl=''):
|
347 |
+
documents = data_ingestion(inputDir, file_list, url_list, gGrUrl)
|
348 |
+
if not documents:
|
349 |
+
raise Exception('Error: No Documents Found')
|
350 |
+
docs = split_docs(documents)
|
351 |
+
# Embeddings
|
352 |
+
embeddings = getEmbeddingFunc(embKey)
|
353 |
+
# create chroma client if doesnt exist
|
354 |
+
vsDict_hd = getVsDict(embeddings, docs, vsDict)
|
355 |
+
# get sources from metadata
|
356 |
+
src_str = getSourcesFromMetadata(vsDict_hd['chromaClient'].get()['metadatas'])
|
357 |
+
src_str = str(src_str[1]) + ' source document(s) successfully loaded in vector store.'+'\n\n' + src_str[0]
|
358 |
+
print(src_str)
|
359 |
+
return vsDict_hd
|
360 |
+
|
361 |
+
|
362 |
+
def num_tokens_from_string(string, encoding_name = "cl100k_base"):
|
363 |
+
"""Returns the number of tokens in a text string."""
|
364 |
+
encoding = tiktoken.get_encoding(encoding_name)
|
365 |
+
num_tokens = len(encoding.encode(string))
|
366 |
+
return num_tokens
|
367 |
+
|
368 |
+
def changeModel(oldModel, newModel):
|
369 |
+
if oldModel:
|
370 |
+
warning = 'Credentials not found for '+oldModel+'. Using default model '+newModel
|
371 |
+
gr.Warning(warning)
|
372 |
+
time.sleep(1)
|
373 |
+
return newModel
|
374 |
+
|
375 |
+
def getModelChoices(openAi_models, wml_models, bam_models):
|
376 |
+
return [model for model in openAi_models] + [model.value+' (watsonx)' for model in wml_models] + [model + ' (bam)' for model in bam_models]
|