Spaces:
Sleeping
Sleeping
import datetime | |
import openai | |
import uuid | |
import gradio as gr | |
from langchain.embeddings import OpenAIEmbeddings | |
from langchain.vectorstores import Chroma | |
from langchain.text_splitter import CharacterTextSplitter, RecursiveCharacterTextSplitter | |
from langchain.chains import ConversationalRetrievalChain | |
from langchain.chains import RetrievalQA | |
import os | |
from langchain.chat_models import ChatOpenAI | |
from langchain import OpenAI | |
from langchain.document_loaders import WebBaseLoader, TextLoader, Docx2txtLoader, PyMuPDFLoader | |
from whatsapp_chat_custom import WhatsAppChatLoader # use this instead of from langchain.document_loaders import WhatsAppChatLoader | |
from collections import deque | |
import re | |
from bs4 import BeautifulSoup | |
import requests | |
from urllib.parse import urlparse | |
import mimetypes | |
from pathlib import Path | |
import tiktoken | |
from ttyd_functions import * | |
from ttyd_consts import * | |
############################################################################################### | |
# selct the mode from ttyd_consts.py | |
mode = mode_general | |
if mode.name!='general': | |
# local vector store as opposed to gradio state vector store | |
vsDict_hard = localData_vecStore(os.getenv("OPENAI_API_KEY"), inputDir=mode.inputDir, file_list=mode.file_list, url_list=mode.url_list) | |
############################################################################################### | |
# Gradio | |
############################################################################################### | |
def generateExamples(api_key_st, vsDict_st): | |
qa_chain = RetrievalQA.from_llm(llm=ChatOpenAI(openai_api_key=api_key_st, temperature=0), | |
retriever=vsDict_st['chromaClient'].as_retriever(search_type="similarity", search_kwargs={"k": 4})) | |
result = qa_chain({'query': exp_query}) | |
answer = result['result'].strip('\n') | |
grSamples = [[]] | |
if answer.startswith('1. '): | |
lines = answer.split("\n") # split the answers into individual lines | |
list_items = [line.split(". ")[1] for line in lines] # extract each answer after the numbering | |
grSamples = [[x] for x in list_items] # gr takes list of each item as a list | |
return grSamples | |
# initialize chatbot function sets the QA Chain, and also sets/updates any other components to start chatting. updateQaChain function only updates QA chain and will be called whenever Adv Settings are updated. | |
def initializeChatbot(temp, k, modelName, stdlQs, api_key_st, vsDict_st, progress=gr.Progress()): | |
progress(0.1, waitText_initialize) | |
qa_chain_st = updateQaChain(temp, k, modelName, stdlQs, api_key_st, vsDict_st) | |
progress(0.5, waitText_initialize) | |
#generate welcome message | |
if mode.welcomeMsg: | |
welMsg = mode.welcomeMsg | |
else: | |
welMsg = qa_chain_st({'question': initialize_prompt, 'chat_history':[]})['answer'] | |
# exSamples = generateExamples(api_key_st, vsDict_st) | |
# exSamples_vis = True if exSamples[0] else False | |
return qa_chain_st, btn.update(interactive=True), initChatbot_btn.update('Chatbot ready. Now visit the chatbot Tab.', interactive=False)\ | |
, aKey_tb.update(), gr.Tabs.update(selected='cb'), chatbot.update(value=[('', welMsg)]) | |
def setApiKey(api_key): | |
if api_key==os.getenv("TEMP_PWD") and os.getenv("OPENAI_API_KEY") is not None: | |
api_key=os.getenv("OPENAI_API_KEY") | |
try: | |
api_key='Null' if api_key is None or api_key=='' else api_key | |
openai.Model.list(api_key=api_key) # test the API key | |
api_key_st = api_key | |
return aKey_tb.update('API Key accepted', interactive=False, type='text'), aKey_btn.update(interactive=False), api_key_st | |
except Exception as e: | |
return aKey_tb.update(str(e), type='text'), *[x.update() for x in [aKey_btn, api_key_state]] | |
# convert user uploaded data to vectorstore | |
def uiData_vecStore(userFiles, userUrls, api_key_st, vsDict_st={}, progress=gr.Progress()): | |
opComponents = [data_ingest_btn, upload_fb, urls_tb] | |
# parse user data | |
file_paths = [] | |
documents = [] | |
if userFiles is not None: | |
if not isinstance(userFiles, list): userFiles = [userFiles] | |
file_paths = [file.name for file in userFiles] | |
userUrls = [x.strip() for x in userUrls.split(",")] if userUrls else [] | |
#create documents | |
documents = data_ingestion(file_list=file_paths, url_list=userUrls, prog=progress) | |
if documents: | |
for file in file_paths: | |
os.remove(file) | |
else: | |
return {}, '', *[x.update() for x in opComponents] | |
# Splitting and Chunks | |
docs = split_docs(documents) | |
# Embeddings | |
try: | |
api_key_st='Null' if api_key_st is None or api_key_st=='' else api_key_st | |
openai.Model.list(api_key=api_key_st) # test the API key | |
embeddings = OpenAIEmbeddings(openai_api_key=api_key_st) | |
except Exception as e: | |
return {}, str(e), *[x.update() for x in opComponents] | |
progress(0.5, 'Creating Vector Database') | |
vsDict_st = getVsDict(embeddings, docs, vsDict_st) | |
# get sources from metadata | |
src_str = getSourcesFromMetadata(vsDict_st['chromaClient'].get()['metadatas']) | |
src_str = str(src_str[1]) + ' source document(s) successfully loaded in vector store.'+'\n\n' + src_str[0] | |
progress(1, 'Data loaded') | |
return vsDict_st, src_str, *[x.update(interactive=False) for x in [data_ingest_btn, upload_fb]], urls_tb.update(interactive=False, placeholder='') | |
# just update the QA Chain, no updates to any UI | |
def updateQaChain(temp, k, modelName, stdlQs, api_key_st, vsDict_st): | |
# if we are not adding data from ui, then use vsDict_hard as vectorstore | |
if vsDict_st=={} and mode.name!='general': vsDict_st=vsDict_hard | |
modelName = modelName.split('(')[0].strip() # so we can provide any info in brackets | |
# check if the input model is chat model or legacy model | |
try: | |
ChatOpenAI(openai_api_key=api_key_st, temperature=0,model_name=modelName,max_tokens=1).predict('') | |
llm = ChatOpenAI(openai_api_key=api_key_st, temperature=float(temp),model_name=modelName) | |
except: | |
OpenAI(openai_api_key=api_key_st, temperature=0,model_name=modelName,max_tokens=1).predict('') | |
llm = OpenAI(openai_api_key=api_key_st, temperature=float(temp),model_name=modelName) | |
# settingsUpdated = 'Settings updated:'+ ' Model=' + modelName + ', Temp=' + str(temp)+ ', k=' + str(k) | |
# gr.Info(settingsUpdated) | |
# Now create QA Chain using the LLM | |
if stdlQs==0: # 0th index i.e. first option | |
qa_chain_st = RetrievalQA.from_llm( | |
llm=llm, | |
retriever=vsDict_st['chromaClient'].as_retriever(search_type="similarity", search_kwargs={"k": int(k)}), | |
return_source_documents=True, | |
input_key = 'question', output_key='answer' # to align with ConversationalRetrievalChain for downstream functions | |
) | |
else: | |
rephQs = False if stdlQs==1 else True | |
qa_chain_st = ConversationalRetrievalChain.from_llm( | |
llm=llm, | |
retriever=vsDict_st['chromaClient'].as_retriever(search_type="similarity", search_kwargs={"k": int(k)}), | |
rephrase_question=rephQs, | |
return_source_documents=True, | |
return_generated_question=True | |
) | |
return qa_chain_st | |
def respond(message, chat_history, qa_chain): | |
result = qa_chain({'question': message, "chat_history": [tuple(x) for x in chat_history]}) | |
src_docs = getSourcesFromMetadata([x.metadata for x in result["source_documents"]], sourceOnly=False)[0] | |
# streaming | |
streaming_answer = "" | |
for ele in "".join(result['answer']): | |
streaming_answer += ele | |
yield "", chat_history + [(message, streaming_answer)], src_docs, btn.update('Please wait...', interactive=False) | |
chat_history.extend([(message, result['answer'])]) | |
yield "", chat_history, src_docs, btn.update('Send Message', interactive=True) | |
##################################################################################################### | |
with gr.Blocks(theme=gr.themes.Default(primary_hue='orange', secondary_hue='gray', neutral_hue='blue'), css="footer {visibility: hidden}") as demo: | |
# Initialize state variables - stored in this browser session - these can only be used within input or output of .click/.submit etc, not as a python var coz they are not stored in backend, only as a frontend gradio component | |
# but if you initialize it with a default value, that value will be stored in backend and accessible across all users. You can also change it with statear.value='newValue' | |
qa_state = gr.State() | |
api_key_state = gr.State() | |
chromaVS_state = gr.State({}) | |
# Setup the Gradio Layout | |
gr.Markdown(mode.title) | |
with gr.Tabs() as tabs: | |
with gr.Tab('Initialization', id='init'): | |
with gr.Row(): | |
with gr.Column(): | |
aKey_tb = gr.Textbox(label="OpenAI API Key", type='password'\ | |
, info='You can find OpenAI API key at https://platform.openai.com/account/api-keys'\ | |
, placeholder='Enter your API key here and hit enter to begin chatting') | |
aKey_btn = gr.Button("Submit API Key") | |
with gr.Row(visible=mode.uiAddDataVis): | |
upload_fb = gr.Files(scale=5, label="Upload (multiple) Files - pdf/txt/docx supported", file_types=['.doc', '.docx', 'text', '.pdf', '.csv']) | |
urls_tb = gr.Textbox(scale=5, label="Enter URLs starting with https (comma separated)"\ | |
, info=url_tb_info\ | |
, placeholder=url_tb_ph) | |
data_ingest_btn = gr.Button("Load Data") | |
status_tb = gr.TextArea(label='Status bar', show_label=False, visible=mode.uiAddDataVis) | |
initChatbot_btn = gr.Button("Initialize Chatbot", variant="primary") | |
with gr.Tab('Chatbot', id='cb'): | |
with gr.Row(): | |
chatbot = gr.Chatbot(label="Chat History", scale=2) | |
srcDocs = gr.TextArea(label="References") | |
msg = gr.Textbox(label="User Input",placeholder="Type your questions here") | |
with gr.Row(): | |
btn = gr.Button("Send Message", interactive=False, variant="primary") | |
clear = gr.ClearButton(components=[msg, chatbot, srcDocs], value="Clear chat history") | |
# exp_comp = gr.Dataset(scale=0.7, samples=[['123'],['456'], ['123'],['456'],['456']], components=[msg], label='Examples (auto generated by LLM)', visible=False) | |
# gr.Examples(examples=exps, inputs=msg) | |
with gr.Accordion("Advance Settings - click to expand", open=False): | |
with gr.Row(): | |
with gr.Column(): | |
temp_sld = gr.Slider(minimum=0, maximum=1, step=0.1, value=0.7, label="Temperature", info='Sampling temperature to use when calling LLM. Defaults to 0.7') | |
k_sld = gr.Slider(minimum=1, maximum=10, step=1, value=mode.k, label="K", info='Number of relavant documents to return from Vector Store. Defaults to 4') | |
model_dd = gr.Dropdown(label='Model Name'\ | |
, choices=model_dd_choices\ | |
, value=model_dd_choices[0], allow_custom_value=True\ | |
, info=model_dd_info) | |
stdlQs_rb = gr.Radio(label='Standalone Question', info=stdlQs_rb_info\ | |
, type='index', value=stdlQs_rb_choices[1]\ | |
, choices=stdlQs_rb_choices) | |
### Setup the Gradio Event Listeners | |
# API button | |
aKey_btn_args = {'fn':setApiKey, 'inputs':[aKey_tb], 'outputs':[aKey_tb, aKey_btn, api_key_state]} | |
aKey_btn.click(**aKey_btn_args) | |
aKey_tb.submit(**aKey_btn_args) | |
# Data Ingest Button | |
data_ingest_btn.click(uiData_vecStore, [upload_fb, urls_tb, api_key_state, chromaVS_state], [chromaVS_state, status_tb, data_ingest_btn, upload_fb, urls_tb]) | |
# Adv Settings | |
advSet_args = {'fn':updateQaChain, 'inputs':[temp_sld, k_sld, model_dd, stdlQs_rb, api_key_state, chromaVS_state], 'outputs':[qa_state]} | |
temp_sld.release(**advSet_args) | |
k_sld.release(**advSet_args) | |
model_dd.change(**advSet_args) | |
stdlQs_rb.change(**advSet_args) | |
# Initialize button | |
initCb_args = {'fn':initializeChatbot, 'inputs':[temp_sld, k_sld, model_dd, stdlQs_rb, api_key_state, chromaVS_state], 'outputs':[qa_state, btn, initChatbot_btn, aKey_tb, tabs, chatbot]} | |
if mode.loadUi=='chatbot': | |
demo.load(**initCb_args) # load Chatbot UI directly on startup | |
initChatbot_btn.click(**initCb_args) | |
# Chatbot submit button | |
chat_btn_args = {'fn':respond, 'inputs':[msg, chatbot, qa_state], 'outputs':[msg, chatbot, srcDocs, btn]} | |
btn.click(**chat_btn_args) | |
msg.submit(**chat_btn_args) | |
demo.queue() | |
demo.launch(show_error=True) |