Spaces:
Sleeping
Sleeping
# import os | |
# os.environ["KERAS_BACKEND"] = "jax" | |
# os.environ['TF_ENABLE_ONEDNN_OPTS'] = '0' | |
# import logging | |
# from pathlib import Path | |
# import numpy as np | |
# import librosa | |
# import tensorflow_hub as hub | |
# from flask import Flask, render_template, request, jsonify, session | |
# from transformers import AutoModelForSpeechSeq2Seq, AutoProcessor, pipeline | |
# import keras | |
# import torch | |
# from werkzeug.utils import secure_filename | |
# import traceback | |
# # Configure logging | |
# logging.basicConfig( | |
# level=logging.INFO, | |
# format='%(asctime)s - %(name)s - %(levelname)s - %(message)s', | |
# handlers=[ | |
# logging.FileHandler('app.log'), | |
# logging.StreamHandler() | |
# ] | |
# ) | |
# logger = logging.getLogger(__name__) | |
# # Environment setup | |
# class AudioProcessor: | |
# _instance = None | |
# _initialized = False | |
# def __new__(cls): | |
# if cls._instance is None: | |
# cls._instance = super(AudioProcessor, cls).__new__(cls) | |
# return cls._instance | |
# def __init__(self): | |
# if not AudioProcessor._initialized: | |
# self.device = "cuda:0" if torch.cuda.is_available() else "cpu" | |
# self.torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32 | |
# self.initialize_models() | |
# AudioProcessor._initialized = True | |
# def initialize_models(self): | |
# try: | |
# logger.info("Initializing models...") | |
# # Initialize transcription model | |
# model_id = "distil-whisper/distil-large-v3" | |
# self.transcription_model = AutoModelForSpeechSeq2Seq.from_pretrained( | |
# model_id, torch_dtype=self.torch_dtype, low_cpu_mem_usage=True, use_safetensors=True | |
# ) | |
# self.transcription_model.to(self.device) | |
# self.processor = AutoProcessor.from_pretrained(model_id) | |
# # Initialize classification model | |
# self.classification_model = keras.saving.load_model("hf://datasciencesage/attentionaudioclassification") | |
# # Initialize pipeline | |
# self.pipe = pipeline( | |
# "automatic-speech-recognition", | |
# model=self.transcription_model, | |
# tokenizer=self.processor.tokenizer, | |
# feature_extractor=self.processor.feature_extractor, | |
# max_new_tokens=128, | |
# chunk_length_s=25, | |
# batch_size=16, | |
# torch_dtype=self.torch_dtype, | |
# device=self.device, | |
# ) | |
# # Initialize YAMNet model | |
# self.yamnet_model = hub.load('https://tfhub.dev/google/yamnet/1') | |
# logger.info("Models initialized successfully") | |
# except Exception as e: | |
# logger.error(f"Error initializing models: {str(e)}") | |
# raise | |
# def load_wav_16k_mono(self, filename): | |
# try: | |
# wav, sr = librosa.load(filename, mono=True, sr=None) | |
# if sr != 16000: | |
# wav = librosa.resample(wav, orig_sr=sr, target_sr=16000) | |
# return wav | |
# except Exception as e: | |
# logger.error(f"Error loading audio file: {str(e)}") | |
# raise | |
# def get_features_yamnet_extract_embedding(self, wav_data): | |
# try: | |
# scores, embeddings, spectrogram = self.yamnet_model(wav_data) | |
# return np.mean(embeddings.numpy(), axis=0) | |
# except Exception as e: | |
# logger.error(f"Error extracting YAMNet embeddings: {str(e)}") | |
# raise | |
# # Initialize Flask application | |
# app = Flask(__name__) | |
# app.secret_key = 'your_secret_key_here' | |
# app.config['UPLOAD_FOLDER'] = Path('uploads') | |
# app.config['MAX_CONTENT_LENGTH'] = 16 * 1024 * 1024 | |
# # Create upload folder | |
# app.config['UPLOAD_FOLDER'].mkdir(exist_ok=True) | |
# # Initialize audio processor (will only happen once) | |
# audio_processor = AudioProcessor() | |
# @app.route('/') | |
# def index(): | |
# session.clear() | |
# return render_template('terminal.html') | |
# @app.route('/process', methods=['POST']) | |
# def process(): | |
# try: | |
# data = request.json | |
# command = data.get('command', '').strip().lower() | |
# if command in ['classify', 'transcribe']: | |
# session['operation'] = command | |
# return jsonify({ | |
# 'result': f'root@math:~$ Upload a .mp3 file for {command} operation.', | |
# 'upload': True | |
# }) | |
# else: | |
# return jsonify({ | |
# 'result': 'root@math:~$ Please specify an operation: "classify" or "transcribe".' | |
# }) | |
# except Exception as e: | |
# logger.error(f"Error in process route: {str(e)}\n{traceback.format_exc()}") | |
# session.pop('operation', None) | |
# return jsonify({'result': f'root@math:~$ Error: {str(e)}'}) | |
# @app.route('/upload', methods=['POST']) | |
# def upload(): | |
# filepath = None | |
# try: | |
# operation = session.get('operation') | |
# if not operation: | |
# return jsonify({ | |
# 'result': 'root@math:~$ Please specify an operation first: "classify" or "transcribe".' | |
# }) | |
# if 'file' not in request.files: | |
# return jsonify({'result': 'root@math:~$ No file uploaded.'}) | |
# file = request.files['file'] | |
# if file.filename == '' or not file.filename.lower().endswith('.mp3'): | |
# return jsonify({'result': 'root@math:~$ Please upload a valid .mp3 file.'}) | |
# filename = secure_filename(file.filename) | |
# filepath = app.config['UPLOAD_FOLDER'] / filename | |
# file.save(filepath) | |
# wav_data = audio_processor.load_wav_16k_mono(filepath) | |
# if operation == 'classify': | |
# embeddings = audio_processor.get_features_yamnet_extract_embedding(wav_data) | |
# embeddings = np.reshape(embeddings, (-1, 1024)) | |
# result = np.argmax(audio_processor.classification_model.predict(embeddings)) | |
# elif operation == 'transcribe': | |
# result = audio_processor.pipe(str(filepath))['text'] | |
# else: | |
# result = 'Invalid operation' | |
# return jsonify({ | |
# 'result': f'root@math:~$ Result is: {result}\nroot@math:~$ Please specify an operation: "classify" or "transcribe".', | |
# 'upload': False | |
# }) | |
# except Exception as e: | |
# logger.error(f"Error in upload route: {str(e)}\n{traceback.format_exc()}") | |
# return jsonify({ | |
# 'result': f'root@math:~$ Error: {str(e)}\nroot@math:~$ Please specify an operation: "classify" or "transcribe".' | |
# }) | |
# finally: | |
# session.pop('operation', None) | |
# if filepath and Path(filepath).exists(): | |
# try: | |
# Path(filepath).unlink() | |
# except Exception as e: | |
# logger.error(f"Error deleting file {filepath}: {str(e)}") | |
import os | |
os.environ["KERAS_BACKEND"] = "jax" | |
os.environ['TF_ENABLE_ONEDNN_OPTS'] = '0' | |
import logging | |
import numpy as np | |
import librosa | |
import tensorflow_hub as hub | |
from flask import Flask, render_template, request, jsonify, session | |
from transformers import AutoModelForSpeechSeq2Seq, AutoProcessor, pipeline | |
import keras | |
import torch | |
import io | |
import traceback | |
# Configure logging to print to terminal only | |
logging.basicConfig( | |
level=logging.INFO, | |
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s', | |
handlers=[ | |
logging.StreamHandler() | |
] | |
) | |
logger = logging.getLogger(__name__) | |
class AudioProcessor: | |
_instance = None | |
_initialized = False | |
def __new__(cls): | |
if cls._instance is None: | |
cls._instance = super(AudioProcessor, cls).__new__(cls) | |
return cls._instance | |
def __init__(self): | |
if not AudioProcessor._initialized: | |
self.device = "cuda:0" if torch.cuda.is_available() else "cpu" | |
self.torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32 | |
self.initialize_models() | |
AudioProcessor._initialized = True | |
def initialize_models(self): | |
try: | |
logger.info("Initializing models...") | |
# Initialize transcription model | |
model_id = "distil-whisper/distil-large-v3" | |
self.transcription_model = AutoModelForSpeechSeq2Seq.from_pretrained( | |
model_id, torch_dtype=self.torch_dtype, low_cpu_mem_usage=True, use_safetensors=True | |
) | |
self.transcription_model.to(self.device) | |
self.processor = AutoProcessor.from_pretrained(model_id) | |
# Initialize classification model | |
self.classification_model = keras.saving.load_model("hf://datasciencesage/attentionaudioclassification") | |
# Initialize pipeline | |
self.pipe = pipeline( | |
"automatic-speech-recognition", | |
model=self.transcription_model, | |
tokenizer=self.processor.tokenizer, | |
feature_extractor=self.processor.feature_extractor, | |
max_new_tokens=128, | |
chunk_length_s=25, | |
batch_size=16, | |
torch_dtype=self.torch_dtype, | |
device=self.device, | |
) | |
# Initialize YAMNet model | |
self.yamnet_model = hub.load('https://tfhub.dev/google/yamnet/1') | |
logger.info("Models initialized successfully") | |
except Exception as e: | |
logger.error(f"Error initializing models: {str(e)}") | |
raise | |
def load_wav_16k_mono(self, audio_data): | |
try: | |
# Load audio from bytes buffer instead of file | |
wav, sr = librosa.load(io.BytesIO(audio_data), mono=True, sr=None) | |
if sr != 16000: | |
wav = librosa.resample(wav, orig_sr=sr, target_sr=16000) | |
return wav | |
except Exception as e: | |
logger.error(f"Error loading audio data: {str(e)}") | |
raise | |
def get_features_yamnet_extract_embedding(self, wav_data): | |
try: | |
scores, embeddings, spectrogram = self.yamnet_model(wav_data) | |
return np.mean(embeddings.numpy(), axis=0) | |
except Exception as e: | |
logger.error(f"Error extracting YAMNet embeddings: {str(e)}") | |
raise | |
# Initialize Flask application | |
app = Flask(__name__) | |
app.secret_key = 'your_secret_key_here' | |
app.config['MAX_CONTENT_LENGTH'] = 16 * 1024 * 1024 | |
# Initialize audio processor (will only happen once) | |
audio_processor = AudioProcessor() | |
def index(): | |
session.clear() | |
return render_template('terminal.html') | |
def process(): | |
try: | |
data = request.json | |
command = data.get('command', '').strip().lower() | |
if command in ['classify', 'transcribe']: | |
session['operation'] = command | |
return jsonify({ | |
'result': f'root@math:~$ Upload a .mp3 file for {command} operation.', | |
'upload': True | |
}) | |
else: | |
return jsonify({ | |
'result': 'root@math:~$ Please specify an operation: "classify" or "transcribe".' | |
}) | |
except Exception as e: | |
logger.error(f"Error in process route: {str(e)}") | |
session.pop('operation', None) | |
return jsonify({'result': f'root@math:~$ Error: {str(e)}'}) | |
def upload(): | |
try: | |
operation = session.get('operation') | |
if not operation: | |
return jsonify({ | |
'result': 'root@math:~$ Please specify an operation first: "classify" or "transcribe".' | |
}) | |
if 'file' not in request.files: | |
return jsonify({'result': 'root@math:~$ No file uploaded.'}) | |
file = request.files['file'] | |
if file.filename == '' or not file.filename.lower().endswith('.mp3'): | |
return jsonify({'result': 'root@math:~$ Please upload a valid .mp3 file.'}) | |
# Read file content into memory | |
audio_data = file.read() | |
wav_data = audio_processor.load_wav_16k_mono(audio_data) | |
if operation == 'classify': | |
embeddings = audio_processor.get_features_yamnet_extract_embedding(wav_data) | |
embeddings = np.reshape(embeddings, (-1, 1024)) | |
result = np.argmax(audio_processor.classification_model.predict(embeddings)) | |
elif operation == 'transcribe': | |
# Create temporary buffer for transcription | |
audio_buffer = io.BytesIO(audio_data) | |
result = audio_processor.pipe(audio_buffer)['text'] | |
else: | |
result = 'Invalid operation' | |
return jsonify({ | |
'result': f'root@math:~$ Result is: {result}\nroot@math:~$ Please specify an operation: "classify" or "transcribe".', | |
'upload': False | |
}) | |
except Exception as e: | |
logger.error(f"Error in upload route: {str(e)}") | |
return jsonify({ | |
'result': f'root@math:~$ Error: {str(e)}\nroot@math:~$ Please specify an operation: "classify" or "transcribe".' | |
}) | |
finally: | |
session.pop('operation', None) | |
# if __name__ == '__main__': | |
# app.run(host='0.0.0.0', port=7860) |