datasciencesage commited on
Commit
d907232
·
1 Parent(s): 9039581

Added all the files

Browse files
Files changed (2) hide show
  1. app.py +70 -0
  2. requirements.txt +9 -0
app.py ADDED
@@ -0,0 +1,70 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ # Setting environment variables
3
+ os.environ["TF_ENABLE_ONEDNN_OPTS"] = "0"
4
+ os.environ["KERAS_BACKEND"] = "jax"
5
+ import streamlit as st
6
+ import cv2
7
+ import numpy as np
8
+ from PIL import Image
9
+ import keras
10
+ import warnings
11
+ warnings.filterwarnings("ignore")
12
+
13
+
14
+ def resize_for_inference(input_image):
15
+ image = np.array(input_image)
16
+ image_rgb = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
17
+ mask = np.zeros(image.shape[:2], np.uint8)
18
+
19
+ height, width = image.shape[:2]
20
+ rect = (10, 10, width - 20, height - 20)
21
+ bgd_model = np.zeros((1, 65), np.float64)
22
+ fgd_model = np.zeros((1, 65), np.float64)
23
+
24
+ cv2.grabCut(image_rgb, mask, rect, bgd_model, fgd_model, 5, cv2.GC_INIT_WITH_RECT)
25
+
26
+ binary_mask = np.where((mask == 2) | (mask == 0), 0, 255).astype('uint8')
27
+
28
+ resized_mask = cv2.resize(binary_mask, (720, 960), interpolation=cv2.INTER_AREA)
29
+
30
+ target_size = (224, 224)
31
+ final_resized_mask = cv2.resize(resized_mask, target_size, interpolation=cv2.INTER_AREA)
32
+
33
+ final_resized_mask = np.expand_dims(final_resized_mask, axis=-1)
34
+
35
+ return final_resized_mask
36
+
37
+ st.title("Body Measurement Predictor")
38
+ st.write("Upload an image to predict body measurements.")
39
+ uploaded_image = st.file_uploader("Choose an image...", type=["jpg", "jpeg", "png"])
40
+
41
+ if 'loaded_model' not in st.session_state:
42
+ with st.spinner("Model is getting loaded. Please wait..."):
43
+ try:
44
+ st.session_state.loaded_model = keras.saving.load_model("hf://datasciencesage/bodym_measurement_model")
45
+ st.success("Model loaded successfully!")
46
+ except Exception as e:
47
+ st.error(f"Error loading model: {e}")
48
+
49
+
50
+ if uploaded_image is not None:
51
+ image = Image.open(uploaded_image)
52
+ st.image(image, caption="Uploaded Image", use_column_width=True)
53
+
54
+ with st.spinner("DOING IMAGE PREPROCESSING.....PLEASE WAIT..."):
55
+ resized_image = resize_for_inference(image)
56
+ single_image_expanded = np.expand_dims(resized_image, axis=0)
57
+
58
+ with st.spinner("INFERENCE IS BEING DONE.....PLEASE WAIT..."):
59
+ single_image_expanded = np.expand_dims(resized_image, axis=0)
60
+
61
+ predicted_values = st.session_state.loaded_model.predict(single_image_expanded)[0]
62
+ columns = ['ankle', 'arm-length', 'bicep', 'calf', 'chest',
63
+ 'forearm', 'height', 'hip', 'leg-length', 'shoulder-breadth',
64
+ 'shoulder-to-crotch', 'thigh', 'waist', 'wrist']
65
+
66
+
67
+
68
+ st.write("Predicted Body Measurements:")
69
+ for body_type, measurement in zip(columns, predicted_values):
70
+ st.write(f"{body_type}: {measurement:.2f} cm")
requirements.txt ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ opencv-python
2
+ numpy
3
+ Pillow
4
+ matplotlib
5
+ keras==3.7.0
6
+ tensorflow==2.18.0
7
+ jax
8
+ huggingface_hub==0.20.3
9
+ streamlit