datasith commited on
Commit
c2cbbaf
·
1 Parent(s): b4ed773

trying a different model

Browse files
Files changed (12) hide show
  1. .DS_Store +0 -0
  2. .gitattributes +1 -0
  3. README.md +7 -31
  4. app.py +46 -7
  5. categories.txt +1 -1
  6. cheetah.jpeg +0 -0
  7. info.txt +0 -9
  8. model.h5 +1 -1
  9. model_test.h5 +3 -0
  10. pug.jpeg +0 -0
  11. reader.py +0 -79
  12. requirements.txt +2 -2
.DS_Store ADDED
Binary file (6.15 kB). View file
 
.gitattributes CHANGED
@@ -25,3 +25,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
25
  *.zip filter=lfs diff=lfs merge=lfs -text
26
  *.zstandard filter=lfs diff=lfs merge=lfs -text
27
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
25
  *.zip filter=lfs diff=lfs merge=lfs -text
26
  *.zstandard filter=lfs diff=lfs merge=lfs -text
27
  *tfevents* filter=lfs diff=lfs merge=lfs -text
28
+ model_test.h5 filter=lfs diff=lfs merge=lfs -text
README.md CHANGED
@@ -1,37 +1,13 @@
1
  ---
2
- title: Pug Or Cat Image Classifier
3
- emoji: 🐶
4
- colorFrom: red
5
- colorTo: yellow
6
  sdk: gradio
 
7
  app_file: app.py
8
  pinned: false
 
9
  ---
10
 
11
- # Configuration
12
-
13
- `title`: _string_
14
- Display title for the Space
15
-
16
- `emoji`: _string_
17
- Space emoji (emoji-only character allowed)
18
-
19
- `colorFrom`: _string_
20
- Color for Thumbnail gradient (red, yellow, green, blue, indigo, purple, pink, gray)
21
-
22
- `colorTo`: _string_
23
- Color for Thumbnail gradient (red, yellow, green, blue, indigo, purple, pink, gray)
24
-
25
- `sdk`: _string_
26
- Can be either `gradio` or `streamlit`
27
-
28
- `sdk_version` : _string_
29
- Only applicable for `streamlit` SDK.
30
- See [doc](https://hf.co/docs/hub/spaces) for more info on supported versions.
31
-
32
- `app_file`: _string_
33
- Path to your main application file (which contains either `gradio` or `streamlit` Python code).
34
- Path is relative to the root of the repository.
35
-
36
- `pinned`: _boolean_
37
- Whether the Space stays on top of your list.
 
1
  ---
2
+ title: Image Classification Cast Parts
3
+ emoji: 🏃
4
+ colorFrom: green
5
+ colorTo: red
6
  sdk: gradio
7
+ sdk_version: 2.8.14
8
  app_file: app.py
9
  pinned: false
10
+ license: mit
11
  ---
12
 
13
+ Check out the configuration reference at https://huggingface.co/docs/hub/spaces#reference
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
app.py CHANGED
@@ -5,12 +5,11 @@ import gradio as gr
5
  import numpy as np
6
  import os
7
  from tensorflow.keras.models import load_model
8
- from reader import get_article
9
 
10
  ### -------------------------------- ###
11
  ### model loading ###
12
  ### -------------------------------- ###
13
- model = load_model('model.h5') # single file model from colab
14
 
15
  ## --------------------------------- ###
16
  ### reading: categories.txt ###
@@ -23,15 +22,55 @@ if os.path.isfile("categories.txt"):
23
  labels = categories.readline().split()
24
 
25
  ## --------------------------------- ###
26
- ### reading: info.txt ###
27
  ### -------------------------------- ###
28
  # borrow file reading functionality from reader.py
29
- info = get_article()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
30
 
31
  ### -------------------------------- ###
32
  ### interface creation ###
33
  ### -------------------------------- ###
34
- samples = ['okay.jpeg', 'defective.jpeg']
35
 
36
  def preprocess(image):
37
  image = np.array(image) / 255
@@ -51,5 +90,5 @@ image = gr.inputs.Image(shape=(300, 300), label="Upload Your Image Here")
51
  label = gr.outputs.Label(num_top_classes=len(labels))
52
 
53
  # generate and launch interface
54
- interface = gr.Interface(fn=predict_image, inputs=image, outputs=label, article=info['article'], css=info['css'], theme='default', title=info['title'], allow_flagging='never', description=info['description'], examples=samples)
55
- interface.launch()
 
5
  import numpy as np
6
  import os
7
  from tensorflow.keras.models import load_model
 
8
 
9
  ### -------------------------------- ###
10
  ### model loading ###
11
  ### -------------------------------- ###
12
+ model = load_model('model_test.h5') # single file model from colab
13
 
14
  ## --------------------------------- ###
15
  ### reading: categories.txt ###
 
22
  labels = categories.readline().split()
23
 
24
  ## --------------------------------- ###
25
+ ### rendering: info.html ###
26
  ### -------------------------------- ###
27
  # borrow file reading functionality from reader.py
28
+ # info =
29
+ description = "A Hugging Space demo created by datasith"
30
+ title = "Cast parts: Deffective or Okay?"
31
+ # css = \
32
+ # '''
33
+ # .div {
34
+ # border: 2px solid black;
35
+ # margin: 10px;
36
+ # padding: 5%;
37
+ # }
38
+ # ul {
39
+ # display: inline-block;
40
+ # text-align: left;
41
+ # }
42
+ # img {
43
+ # display: block;
44
+ # margin: auto;
45
+ # }
46
+ # .description {
47
+ # text-align: center;
48
+ # }
49
+ # '''
50
+
51
+ article = \
52
+ '''
53
+ #### Deffective or Okay?
54
+
55
+ Demo app including a binary classification model for casted parts
56
+ This is a test project to get familiar with Hugging Face!
57
+ The space includes the necessary files for everything to run smoothly on HF's Spaces:
58
+
59
+ - app.py
60
+ - reader.py
61
+ - requirements.txt
62
+ - model.h5 (TensorFlow/Keras)
63
+ - categories.txt
64
+ - info.txt
65
+
66
+ The data used to train the model is available as [Kaggle dataset](https://www.kaggle.com/datasets/ravirajsinh45/real-life-industrial-dataset-of-casting-product).
67
+ The space was inspired by @Isabel's wonderful [cat or pug](https://huggingface.co/spaces/isabel/pug-or-cat-image-classifier) one. Enjoy!d
68
+ '''
69
 
70
  ### -------------------------------- ###
71
  ### interface creation ###
72
  ### -------------------------------- ###
73
+ samples = ['defective.jpeg', 'okay.jpeg']
74
 
75
  def preprocess(image):
76
  image = np.array(image) / 255
 
90
  label = gr.outputs.Label(num_top_classes=len(labels))
91
 
92
  # generate and launch interface
93
+ interface = gr.Interface(fn=predict_image, inputs=image, outputs=label, article=article, theme='default', title=title, allow_flagging='never', description=description, examples=samples)
94
+ interface.launch()
categories.txt CHANGED
@@ -1 +1 @@
1
- cat pug
 
1
+ def_front ok_front
cheetah.jpeg DELETED
Binary file (130 kB)
 
info.txt DELETED
@@ -1,9 +0,0 @@
1
- Isabel
2
- Cat or pug? A Helpful App for the Species-Confused
3
- This is a test project to see what students might be able to produce and host permanently as their final project! Students do NOT need to edit or interact with code in any way, although they can view (and even edit) it if they would like to. The interface above is generated automatically based students' data. Students collect data themselves and complete the project writeup (including this description and the info below). We provide `app.py`, `reader.py`, and `requirements.txt`, while students provide `model.h5`, which is produced by a single-block Colab notebook and directly downloaded from a student's google drive; `categories.txt` which includes the different images category names on a single line; and `info.txt`, which they can create in Hugging Face or upload directly as a plaintext file.
4
- The data for this model was collected from my camera roll over the past couple of years. I have a lot of pug and cat pictures. This was a quick test to see whether the model generalizes over number of categories
5
- How does our model take into account data privacy? I own this data and I can give whatever permission I would like to use it :>
6
- How does our model address the issue of bias in AI? It's important to develop sensitive AI models. More explanation is needed here.
7
- How does our model relate to the future of work or human identity? Something something.
8
- http://justfunfacts.com/wp-content/uploads/2018/12/chinchillas.jpg
9
- My teammates were these chinchillas! What a talented group.
 
 
 
 
 
 
 
 
 
 
model.h5 CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:1efe28d48383176423c3a412fd5090ce30ec7b5b40abd1c577b10d8a6e753c0e
3
  size 134670360
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:aacf5ddc63a89f828b15fbb0fe87b7c28fce1b521271fe7a2ac563809ac23a9c
3
  size 134670360
model_test.h5 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:21c73dae526f60eedb1ee9645e0575917b3c86345324ca9018d8128c442e3ce0
3
+ size 221962152
pug.jpeg DELETED
Binary file (6.14 kB)
 
reader.py DELETED
@@ -1,79 +0,0 @@
1
- import os
2
- from yattag import Doc
3
-
4
- ## --------------------------------- ###
5
- ### reading: info.txt ###
6
- ### -------------------------------- ###
7
- # placeholders in case info.txt does not exist
8
-
9
- def get_article():
10
- filename = "info.txt"
11
- placeholder = "please create an info.txt to customize this text"
12
-
13
- title = bkgd = data_collection = priv_cons = bias_cons = ident_cons = img_src = membs = placeholder
14
- # check if info.txt is present
15
- if os.path.isfile(filename):
16
- # open info.txt in read mode
17
- info = open(filename, "r")
18
-
19
- # read each line to a string
20
- description = "An AI project created by " + info.readline()
21
- title = info.readline()
22
- bkgd = info.readline()
23
- data_collection = info.readline()
24
- priv_cons = info.readline()
25
- bias_cons = info.readline()
26
- ident_cons = info.readline()
27
- img_src = info.readline()
28
- membs = info.readline()
29
-
30
- # close file
31
- info.close()
32
-
33
- # use yattag library to generate html
34
- doc, tag, text, line = Doc().ttl()
35
- # create html based on info.txt
36
- with tag('div'):
37
- with tag('div', klass='my-div'):
38
- line('h2', 'Project Background')
39
- line('p', bkgd)
40
- with tag('div', klass='my-div'):
41
- line('h2', 'Data Collection')
42
- line('p', data_collection)
43
- with tag('div', klass='my-div'):
44
- line('h2', 'Ethical Considerations')
45
- with tag('ul'):
46
- line('li', priv_cons)
47
- line('li', bias_cons)
48
- line('li', ident_cons)
49
- with tag('div', klass='my-div'):
50
- line('h2', 'Our Team')
51
- line('p', membs)
52
- doc.stag('img', src=img_src)
53
-
54
- css = '''
55
- .my-div {
56
- border: 2px solid black;
57
- text-align: center;
58
- margin: 10px;
59
- padding: 5%;
60
- }
61
- ul {
62
- display: inline-block;
63
- text-align: left;
64
- }
65
- img {
66
- display: block;
67
- margin: auto;
68
- }
69
- .description {
70
- text-align: center;
71
- }
72
- '''
73
-
74
- return {
75
- 'article': doc.getvalue(),
76
- 'css': css,
77
- 'title': title,
78
- 'description': description,
79
- }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
requirements.txt CHANGED
@@ -1,3 +1,3 @@
1
- tensorflow==2.6.1
2
- keras==2.6.0
3
  yattag==1.14.0
 
1
+ tensorflow>=2.6.1
2
+ keras>=2.6.0
3
  yattag==1.14.0