Update app.py
Browse files
app.py
CHANGED
@@ -1,11 +1,101 @@
|
|
1 |
import streamlit as st
|
2 |
import ast
|
3 |
import json
|
4 |
-
import ollama
|
5 |
-
from llama_index.llms.ollama import Ollama
|
6 |
from llama_index.core.llms import ChatMessage
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
7 |
|
8 |
# Streamlit UI
|
9 |
st.title("Auto Test Case Generation using LLM")
|
10 |
|
11 |
-
uploaded_files = st.file_uploader("Upload a python(.py) file", type=".py", accept_multiple_files=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import streamlit as st
|
2 |
import ast
|
3 |
import json
|
|
|
|
|
4 |
from llama_index.core.llms import ChatMessage
|
5 |
+
from transformers import AutoTokenizer
|
6 |
+
import transformers
|
7 |
+
import torch
|
8 |
+
|
9 |
+
# import ollama
|
10 |
+
# from llama_index.llms.ollama import Ollama
|
11 |
+
# from llama_index.core.llms import ChatMessage
|
12 |
|
13 |
# Streamlit UI
|
14 |
st.title("Auto Test Case Generation using LLM")
|
15 |
|
16 |
+
uploaded_files = st.file_uploader("Upload a python(.py) file", type=".py", accept_multiple_files=True)
|
17 |
+
|
18 |
+
if uploaded_files:
|
19 |
+
for uploaded_file in uploaded_files:
|
20 |
+
with open(f"./data/{uploaded_file.name}", 'wb') as f:
|
21 |
+
f.write(uploaded_file.getbuffer())
|
22 |
+
st.success("File uploaded...")
|
23 |
+
|
24 |
+
st.success("Fetching list of functions...")
|
25 |
+
file_path = f"./data/{uploaded_file.name}"
|
26 |
+
def extract_functions_from_file(file_path):
|
27 |
+
with open(file_path, "r") as file:
|
28 |
+
file_content = file.read()
|
29 |
+
|
30 |
+
parsed_content = ast.parse(file_content)
|
31 |
+
functions = {}
|
32 |
+
|
33 |
+
for node in ast.walk(parsed_content):
|
34 |
+
if isinstance(node, ast.FunctionDef):
|
35 |
+
func_name = node.name
|
36 |
+
func_body = ast.get_source_segment(file_content, node)
|
37 |
+
functions[func_name] = func_body
|
38 |
+
|
39 |
+
return functions
|
40 |
+
|
41 |
+
functions = extract_functions_from_file(file_path)
|
42 |
+
|
43 |
+
list_of_functions = list(functions.keys())
|
44 |
+
st.write(list_of_functions)
|
45 |
+
|
46 |
+
# Initialize session state for chat messages
|
47 |
+
if "messages" not in st.session_state:
|
48 |
+
st.session_state.messages = []
|
49 |
+
|
50 |
+
# Display chat messages from history on app rerun
|
51 |
+
for message in st.session_state.messages:
|
52 |
+
with st.chat_message(message["role"]):
|
53 |
+
st.markdown(message["content"])
|
54 |
+
|
55 |
+
# Accept user input
|
56 |
+
if func := st.chat_input("Enter the function name for generating test cases:"):
|
57 |
+
st.session_state.messages.append({"role": "assistant", "content": f"Generating test cases for {func}"})
|
58 |
+
st.success(f"Generating test cases for {func}")
|
59 |
+
|
60 |
+
func = ''.join(func.split())
|
61 |
+
|
62 |
+
if func not in list_of_functions:
|
63 |
+
st.write("Incorrect function name")
|
64 |
+
|
65 |
+
else:
|
66 |
+
snippet = functions[func]
|
67 |
+
|
68 |
+
model = "codellama/CodeLlama-7b-Instruct-hf"
|
69 |
+
|
70 |
+
tokenizer = AutoTokenizer.from_pretrained(model)
|
71 |
+
pipeline = transformers.pipeline(
|
72 |
+
model=model,
|
73 |
+
torch_dtype=torch.float16,
|
74 |
+
device_map="auto",
|
75 |
+
)
|
76 |
+
|
77 |
+
# Generation
|
78 |
+
# resp = ollama.generate(model='codellama',
|
79 |
+
# prompt=f"""You are a helpful coding assistant. Your task is to generate unit test cases for this function : {snippet}\
|
80 |
+
# \n\nPolitely refuse if the function is not suitable for generating test cases.
|
81 |
+
# \n\nGenerate atleast 5 unit test case. Include couple of edge cases as well.
|
82 |
+
# \n\nThere should be no duplicate test cases. Avoid generating repeated statements.
|
83 |
+
# """)
|
84 |
+
resp = pipeline(
|
85 |
+
f"""You are a helpful coding assistant. Your task is to generate unit test cases for this function : {snippet}\
|
86 |
+
\n\nPolitely refuse if the function is not suitable for generating test cases.
|
87 |
+
\n\nGenerate atleast 5 unit test case. Include couple of edge cases as well.
|
88 |
+
\n\nThere should be no duplicate test cases. Avoid generating repeated statements.
|
89 |
+
""",
|
90 |
+
do_sample=True,
|
91 |
+
top_k=10,
|
92 |
+
temperature=0.1,
|
93 |
+
top_p=0.95,
|
94 |
+
num_return_sequences=1,
|
95 |
+
eos_token_id=tokenizer.eos_token_id,
|
96 |
+
)
|
97 |
+
resp_list = [n['generated_text'] for n in resp]
|
98 |
+
response = " ".join(resp_list)
|
99 |
+
st.session_state.messages.append({"role": "assistant", "content": f"{resp['response']}"})
|
100 |
+
st.markdown(resp['response'])
|
101 |
+
|