Update app.py
Browse files
app.py
CHANGED
@@ -1,191 +1,328 @@
|
|
1 |
-
import os
|
2 |
-
import re
|
3 |
-
import streamlit as st
|
4 |
-
import ast
|
5 |
-
import json
|
6 |
-
import openai
|
7 |
-
from llama_index.llms.openai import OpenAI
|
8 |
-
from llama_index.core.llms import ChatMessage
|
9 |
-
from llama_index.llms.anthropic import Anthropic
|
10 |
-
from llama_index.llms.mistralai import MistralAI
|
11 |
|
12 |
-
import nest_asyncio
|
13 |
-
nest_asyncio.apply()
|
14 |
|
15 |
-
# import ollama
|
16 |
-
# from llama_index.llms.ollama import Ollama
|
17 |
-
# from llama_index.core.llms import ChatMessage
|
18 |
|
19 |
|
20 |
-
# OpenAI credentials
|
21 |
-
# key = os.getenv('OPENAI_API_KEY')
|
22 |
-
# openai.api_key = key
|
23 |
-
# os.environ["OPENAI_API_KEY"] = key
|
24 |
|
25 |
-
# Anthropic credentials
|
26 |
-
# key = os.getenv('CLAUDE_API_KEY')
|
27 |
-
# os.environ["ANTHROPIC_API_KEY"] = key
|
28 |
|
29 |
-
# Mistral
|
30 |
-
key = os.getenv('MISTRAL_API_KEY')
|
31 |
-
os.environ["MISTRAL_API_KEY"] = key
|
32 |
|
33 |
|
34 |
|
35 |
-
# Streamlit UI
|
36 |
-
st.title("Auto Test Case Generation using LLM")
|
37 |
|
38 |
-
uploaded_files = st.file_uploader("Upload a python or Java file", type=[".py","java"], accept_multiple_files=True)
|
39 |
|
40 |
-
if uploaded_files:
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
|
50 |
-
|
51 |
-
|
52 |
|
53 |
-
|
54 |
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
|
59 |
-
|
60 |
-
|
61 |
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
|
78 |
-
|
79 |
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
|
96 |
-
|
97 |
-
|
98 |
|
99 |
-
|
100 |
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
127 |
if "messages" not in st.session_state:
|
128 |
st.session_state.messages = []
|
129 |
|
130 |
-
# Display chat messages from history on app rerun
|
131 |
for message in st.session_state.messages:
|
132 |
with st.chat_message(message["role"]):
|
133 |
st.markdown(message["content"])
|
134 |
|
135 |
-
# Accept user input
|
136 |
if func := st.chat_input("Enter the function name for generating test cases:"):
|
137 |
st.session_state.messages.append({"role": "assistant", "content": f"Generating test cases for {func}"})
|
138 |
st.success(f"Generating test cases for {func}")
|
139 |
-
|
140 |
func = ''.join(func.split())
|
|
|
|
|
|
|
141 |
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
else:
|
146 |
-
snippet = functions[func]
|
147 |
-
|
148 |
-
# Generation
|
149 |
-
# model = "gpt-3.5-turbo"
|
150 |
-
# model = "claude-3-haiku-20240307"
|
151 |
-
# model = "claude-3-sonnet-20240229"
|
152 |
-
# model = "claude-3-opus-20240229"
|
153 |
-
model = "codestral-latest"
|
154 |
-
|
155 |
-
# Generation
|
156 |
-
# resp = ollama.generate(model='codellama',
|
157 |
-
# prompt=f""" Your task is to generate unit test cases for this function : {snippet}\
|
158 |
-
# \n\n Politely refuse if the function is not suitable for generating test cases.
|
159 |
-
# \n\n Generate atleast 5 unit test case. Include couple of edge cases as well.
|
160 |
-
# \n\n There should be no duplicate test cases.
|
161 |
-
# \n\n Avoid generating repeated statements.
|
162 |
-
# """)
|
163 |
-
|
164 |
-
prompt=f""" Your task is to generate unit test cases for this function : \n\n{snippet}\
|
165 |
-
\n\n Generate between 3 to 8 unique unit test cases. Include couple of edge cases as well.
|
166 |
-
\n\n All the test cases should have the mandatory assert statement.
|
167 |
-
\n\n Every test case should be defined as a method inside the class.
|
168 |
-
\n\n All the test cases should have textual description.
|
169 |
-
\n\n Politely refuse if the function is not suitable for generating test cases.
|
170 |
-
\n\n There should be no duplicate and incomplete test case.
|
171 |
-
\n\n Avoid generating repeated statements.
|
172 |
-
\n\n Recheck your response before generating.
|
173 |
-
\n\n Do not share the last Test Case.
|
174 |
-
"""
|
175 |
-
|
176 |
-
# print(prompt)
|
177 |
-
|
178 |
-
resp = res(prompt = prompt, model = model)
|
179 |
-
|
180 |
-
# Post Processing
|
181 |
-
post_prompt = f"""Except the last test case, display everything that is present in this end to end: \n\n{resp}\
|
182 |
-
\n\n Do not add anything extra. Just copy and paste everything except the last test case.
|
183 |
-
\n\n Do not mention the count of total number of test cases in the response.
|
184 |
-
\n\n Do not mention this sentence - "I have excluded the last test case as per your request"
|
185 |
-
"""
|
186 |
-
post_resp = res(prompt = post_prompt, model = model)
|
187 |
-
st.session_state.messages.append({"role": "assistant", "content": f"{post_resp}"})
|
188 |
-
st.markdown(post_resp)
|
189 |
-
# st.session_state.messages.append({"role": "assistant", "content": f"{resp['response']}"})
|
190 |
-
# st.markdown(resp['response'])
|
191 |
-
|
|
|
1 |
+
# import os
|
2 |
+
# import re
|
3 |
+
# import streamlit as st
|
4 |
+
# import ast
|
5 |
+
# import json
|
6 |
+
# import openai
|
7 |
+
# from llama_index.llms.openai import OpenAI
|
8 |
+
# from llama_index.core.llms import ChatMessage
|
9 |
+
# from llama_index.llms.anthropic import Anthropic
|
10 |
+
# from llama_index.llms.mistralai import MistralAI
|
11 |
|
12 |
+
# import nest_asyncio
|
13 |
+
# nest_asyncio.apply()
|
14 |
|
15 |
+
# # import ollama
|
16 |
+
# # from llama_index.llms.ollama import Ollama
|
17 |
+
# # from llama_index.core.llms import ChatMessage
|
18 |
|
19 |
|
20 |
+
# # OpenAI credentials
|
21 |
+
# # key = os.getenv('OPENAI_API_KEY')
|
22 |
+
# # openai.api_key = key
|
23 |
+
# # os.environ["OPENAI_API_KEY"] = key
|
24 |
|
25 |
+
# # Anthropic credentials
|
26 |
+
# # key = os.getenv('CLAUDE_API_KEY')
|
27 |
+
# # os.environ["ANTHROPIC_API_KEY"] = key
|
28 |
|
29 |
+
# # Mistral
|
30 |
+
# key = os.getenv('MISTRAL_API_KEY')
|
31 |
+
# os.environ["MISTRAL_API_KEY"] = key
|
32 |
|
33 |
|
34 |
|
35 |
+
# # Streamlit UI
|
36 |
+
# st.title("Auto Test Case Generation using LLM")
|
37 |
|
38 |
+
# uploaded_files = st.file_uploader("Upload a python or Java file", type=[".py","java"], accept_multiple_files=True)
|
39 |
|
40 |
+
# if uploaded_files:
|
41 |
+
# for uploaded_file in uploaded_files:
|
42 |
+
# with open(f"./data/{uploaded_file.name}", 'wb') as f:
|
43 |
+
# f.write(uploaded_file.getbuffer())
|
44 |
+
# st.success("File uploaded...")
|
45 |
|
46 |
+
# # Check file type
|
47 |
+
# _, file_extension = os.path.splitext(uploaded_file.name)
|
48 |
+
# print(file_extension)
|
49 |
|
50 |
+
# st.success("Fetching list of functions...")
|
51 |
+
# file_path = f"./data/{uploaded_file.name}"
|
52 |
|
53 |
+
# def extract_functions_from_file(file_path, file_extension):
|
54 |
|
55 |
+
# if file_extension == '.py':
|
56 |
+
# with open(file_path, "r") as file:
|
57 |
+
# file_content = file.read()
|
58 |
|
59 |
+
# parsed_content = ast.parse(file_content)
|
60 |
+
# methods = {}
|
61 |
|
62 |
+
# for node in ast.walk(parsed_content):
|
63 |
+
# if isinstance(node, ast.FunctionDef):
|
64 |
+
# func_name = node.name
|
65 |
+
# func_body = ast.get_source_segment(file_content, node)
|
66 |
+
# methods[func_name] = func_body
|
67 |
|
68 |
+
# elif file_extension == '.java':
|
69 |
+
# with open(file_path, 'r') as file:
|
70 |
+
# lines = file.readlines()
|
71 |
|
72 |
+
# methods = {}
|
73 |
+
# inside_method = False
|
74 |
+
# method_name = None
|
75 |
+
# method_body = []
|
76 |
+
# brace_count = 0
|
77 |
|
78 |
+
# method_signature_pattern = re.compile(r'((?:public|protected|private|static|\s)*)\s+[\w<>\[\]]+\s+(\w+)\s*\([^)]*\)\s*\{')
|
79 |
|
80 |
+
# for line in lines:
|
81 |
+
# if not inside_method:
|
82 |
+
# match = method_signature_pattern.search(line)
|
83 |
+
# if match:
|
84 |
+
# modifiers, method_name = match.groups()
|
85 |
+
# inside_method = True
|
86 |
+
# method_body.append(line)
|
87 |
+
# brace_count = line.count('{') - line.count('}')
|
88 |
+
# else:
|
89 |
+
# method_body.append(line)
|
90 |
+
# brace_count += line.count('{') - line.count('}')
|
91 |
+
# if brace_count == 0:
|
92 |
+
# inside_method = False
|
93 |
+
# methods[method_name] = ''.join(method_body)
|
94 |
+
# method_body = []
|
95 |
|
96 |
+
# if 'main' in methods.keys():
|
97 |
+
# del(methods['main'])
|
98 |
|
99 |
+
# return methods
|
100 |
|
101 |
+
# functions = extract_functions_from_file(file_path, file_extension)
|
102 |
+
# list_of_functions = list(functions.keys())
|
103 |
+
# st.write(list_of_functions)
|
104 |
+
|
105 |
+
# def res(prompt, model=None):
|
106 |
+
|
107 |
+
# # response = openai.chat.completions.create(
|
108 |
+
# # model=model,
|
109 |
+
# # messages=[
|
110 |
+
# # {"role": "user",
|
111 |
+
# # "content": prompt,
|
112 |
+
# # }
|
113 |
+
# # ]
|
114 |
+
# # )
|
115 |
+
|
116 |
+
# # return response.choices[0].message.content
|
117 |
+
|
118 |
+
# response = [
|
119 |
+
# ChatMessage(role="system", content="You are a sincere and helpful coding assistant"),
|
120 |
+
# ChatMessage(role="user", content=prompt),
|
121 |
+
# ]
|
122 |
+
# # resp = Anthropic(model=model).chat(response)
|
123 |
+
# resp = MistralAI(model).chat(response)
|
124 |
+
# return resp
|
125 |
+
|
126 |
+
# # Initialize session state for chat messages
|
127 |
+
# if "messages" not in st.session_state:
|
128 |
+
# st.session_state.messages = []
|
129 |
+
|
130 |
+
# # Display chat messages from history on app rerun
|
131 |
+
# for message in st.session_state.messages:
|
132 |
+
# with st.chat_message(message["role"]):
|
133 |
+
# st.markdown(message["content"])
|
134 |
+
|
135 |
+
# # Accept user input
|
136 |
+
# if func := st.chat_input("Enter the function name for generating test cases:"):
|
137 |
+
# st.session_state.messages.append({"role": "assistant", "content": f"Generating test cases for {func}"})
|
138 |
+
# st.success(f"Generating test cases for {func}")
|
139 |
+
|
140 |
+
# func = ''.join(func.split())
|
141 |
+
|
142 |
+
# if func not in list_of_functions:
|
143 |
+
# st.write("Incorrect function name")
|
144 |
+
|
145 |
+
# else:
|
146 |
+
# snippet = functions[func]
|
147 |
+
|
148 |
+
# # Generation
|
149 |
+
# # model = "gpt-3.5-turbo"
|
150 |
+
# # model = "claude-3-haiku-20240307"
|
151 |
+
# # model = "claude-3-sonnet-20240229"
|
152 |
+
# # model = "claude-3-opus-20240229"
|
153 |
+
# model = "codestral-latest"
|
154 |
+
|
155 |
+
# # Generation
|
156 |
+
# # resp = ollama.generate(model='codellama',
|
157 |
+
# # prompt=f""" Your task is to generate unit test cases for this function : {snippet}\
|
158 |
+
# # \n\n Politely refuse if the function is not suitable for generating test cases.
|
159 |
+
# # \n\n Generate atleast 5 unit test case. Include couple of edge cases as well.
|
160 |
+
# # \n\n There should be no duplicate test cases.
|
161 |
+
# # \n\n Avoid generating repeated statements.
|
162 |
+
# # """)
|
163 |
+
|
164 |
+
# prompt=f""" Your task is to generate unit test cases for this function : \n\n{snippet}\
|
165 |
+
# \n\n Generate between 3 to 8 unique unit test cases. Include couple of edge cases as well.
|
166 |
+
# \n\n All the test cases should have the mandatory assert statement.
|
167 |
+
# \n\n Every test case should be defined as a method inside the class.
|
168 |
+
# \n\n All the test cases should have textual description.
|
169 |
+
# \n\n Politely refuse if the function is not suitable for generating test cases.
|
170 |
+
# \n\n There should be no duplicate and incomplete test case.
|
171 |
+
# \n\n Avoid generating repeated statements.
|
172 |
+
# \n\n Recheck your response before generating.
|
173 |
+
# \n\n Do not share the last Test Case.
|
174 |
+
# """
|
175 |
+
|
176 |
+
# # print(prompt)
|
177 |
+
|
178 |
+
# resp = res(prompt = prompt, model = model)
|
179 |
+
|
180 |
+
# # Post Processing
|
181 |
+
# post_prompt = f"""Except the last test case, display everything that is present in this end to end: \n\n{resp}\
|
182 |
+
# \n\n Do not add anything extra. Just copy and paste everything except the last test case.
|
183 |
+
# \n\n Do not mention the count of total number of test cases in the response.
|
184 |
+
# \n\n Do not mention this sentence - "I have excluded the last test case as per your request"
|
185 |
+
# """
|
186 |
+
# post_resp = res(prompt = post_prompt, model = model)
|
187 |
+
# st.session_state.messages.append({"role": "assistant", "content": f"{post_resp}"})
|
188 |
+
# st.markdown(post_resp)
|
189 |
+
# # st.session_state.messages.append({"role": "assistant", "content": f"{resp['response']}"})
|
190 |
+
# # st.markdown(resp['response'])
|
191 |
+
|
192 |
+
|
193 |
+
|
194 |
+
|
195 |
+
import os
|
196 |
+
import re
|
197 |
+
import ast
|
198 |
+
import streamlit as st
|
199 |
+
from llama_index.llms.openai import OpenAI
|
200 |
+
from llama_index.core.llms import ChatMessage
|
201 |
+
from llama_index.llms.anthropic import Anthropic
|
202 |
+
from llama_index.llms.mistralai import MistralAI
|
203 |
+
import nest_asyncio
|
204 |
+
|
205 |
+
class TestCaseGenerator:
|
206 |
+
def __init__(self):
|
207 |
+
nest_asyncio.apply()
|
208 |
+
self.key = os.getenv('MISTRAL_API_KEY')
|
209 |
+
os.environ["MISTRAL_API_KEY"] = self.key
|
210 |
+
self.model = "codestral-latest"
|
211 |
+
self.functions = {}
|
212 |
+
self.list_of_functions = []
|
213 |
+
|
214 |
+
def setup_streamlit_ui(self):
|
215 |
+
st.title("Auto Test Case Generation using LLM")
|
216 |
+
uploaded_files = st.file_uploader("Upload a python or Java file", type=[".py", "java"], accept_multiple_files=True)
|
217 |
+
if uploaded_files:
|
218 |
+
for uploaded_file in uploaded_files:
|
219 |
+
self.process_uploaded_file(uploaded_file)
|
220 |
+
|
221 |
+
def process_uploaded_file(self, uploaded_file):
|
222 |
+
with open(f"./data/{uploaded_file.name}", 'wb') as f:
|
223 |
+
f.write(uploaded_file.getbuffer())
|
224 |
+
st.success("File uploaded...")
|
225 |
+
_, file_extension = os.path.splitext(uploaded_file.name)
|
226 |
+
print(file_extension)
|
227 |
+
st.success("Fetching list of functions...")
|
228 |
+
file_path = f"./data/{uploaded_file.name}"
|
229 |
+
self.extract_functions_from_file(file_path, file_extension)
|
230 |
+
st.write(self.list_of_functions)
|
231 |
+
|
232 |
+
def extract_functions_from_file(self, file_path, file_extension):
|
233 |
+
if file_extension == '.py':
|
234 |
+
self.extract_python_functions(file_path)
|
235 |
+
elif file_extension == '.java':
|
236 |
+
self.extract_java_functions(file_path)
|
237 |
+
if 'main' in self.functions.keys():
|
238 |
+
del(self.functions['main'])
|
239 |
+
self.list_of_functions = list(self.functions.keys())
|
240 |
+
|
241 |
+
def extract_python_functions(self, file_path):
|
242 |
+
with open(file_path, "r") as file:
|
243 |
+
file_content = file.read()
|
244 |
+
parsed_content = ast.parse(file_content)
|
245 |
+
for node in ast.walk(parsed_content):
|
246 |
+
if isinstance(node, ast.FunctionDef):
|
247 |
+
func_name = node.name
|
248 |
+
func_body = ast.get_source_segment(file_content, node)
|
249 |
+
self.functions[func_name] = func_body
|
250 |
+
|
251 |
+
def extract_java_functions(self, file_path):
|
252 |
+
with open(file_path, 'r') as file:
|
253 |
+
lines = file.readlines()
|
254 |
+
inside_method = False
|
255 |
+
method_name = None
|
256 |
+
method_body = []
|
257 |
+
brace_count = 0
|
258 |
+
method_signature_pattern = re.compile(r'((?:public|protected|private|static|\s)*)\s+[\w<>\[\]]+\s+(\w+)\s*\([^)]*\)\s*\{')
|
259 |
+
for line in lines:
|
260 |
+
if not inside_method:
|
261 |
+
match = method_signature_pattern.search(line)
|
262 |
+
if match:
|
263 |
+
modifiers, method_name = match.groups()
|
264 |
+
inside_method = True
|
265 |
+
method_body.append(line)
|
266 |
+
brace_count = line.count('{') - line.count('}')
|
267 |
+
else:
|
268 |
+
method_body.append(line)
|
269 |
+
brace_count += line.count('{') - line.count('}')
|
270 |
+
if brace_count == 0:
|
271 |
+
inside_method = False
|
272 |
+
self.functions[method_name] = ''.join(method_body)
|
273 |
+
method_body = []
|
274 |
+
|
275 |
+
def generate_response(self, prompt):
|
276 |
+
response = [
|
277 |
+
ChatMessage(role="system", content="You are a sincere and helpful coding assistant"),
|
278 |
+
ChatMessage(role="user", content=prompt),
|
279 |
+
]
|
280 |
+
resp = MistralAI(self.model).chat(response)
|
281 |
+
return resp
|
282 |
+
|
283 |
+
def generate_test_cases(self, func):
|
284 |
+
if func not in self.list_of_functions:
|
285 |
+
st.write("Incorrect function name")
|
286 |
+
return
|
287 |
+
|
288 |
+
snippet = self.functions[func]
|
289 |
+
prompt = f"""Your task is to generate unit test cases for this function : \n\n{snippet}\
|
290 |
+
\n\n Generate between 3 to 8 unique unit test cases. Include couple of edge cases as well.
|
291 |
+
\n\n All the test cases should have the mandatory assert statement.
|
292 |
+
\n\n Every test case should be defined as a method inside the class.
|
293 |
+
\n\n All the test cases should have textual description.
|
294 |
+
\n\n Politely refuse if the function is not suitable for generating test cases.
|
295 |
+
\n\n There should be no duplicate and incomplete test case.
|
296 |
+
\n\n Avoid generating repeated statements.
|
297 |
+
\n\n Recheck your response before generating.
|
298 |
+
\n\n Do not share the last Test Case.
|
299 |
+
"""
|
300 |
+
resp = self.generate_response(prompt)
|
301 |
+
post_prompt = f"""Except the last test case, display everything that is present in this end to end: \n\n{resp}\
|
302 |
+
\n\n Do not add anything extra. Just copy and paste everything except the last test case.
|
303 |
+
\n\n Do not mention the count of total number of test cases in the response.
|
304 |
+
\n\n Do not mention this sentence - "I have excluded the last test case as per your request"
|
305 |
+
"""
|
306 |
+
post_resp = self.generate_response(post_prompt)
|
307 |
+
return post_resp
|
308 |
+
|
309 |
+
def run(self):
|
310 |
+
self.setup_streamlit_ui()
|
311 |
if "messages" not in st.session_state:
|
312 |
st.session_state.messages = []
|
313 |
|
|
|
314 |
for message in st.session_state.messages:
|
315 |
with st.chat_message(message["role"]):
|
316 |
st.markdown(message["content"])
|
317 |
|
|
|
318 |
if func := st.chat_input("Enter the function name for generating test cases:"):
|
319 |
st.session_state.messages.append({"role": "assistant", "content": f"Generating test cases for {func}"})
|
320 |
st.success(f"Generating test cases for {func}")
|
|
|
321 |
func = ''.join(func.split())
|
322 |
+
test_cases = self.generate_test_cases(func)
|
323 |
+
st.session_state.messages.append({"role": "assistant", "content": f"{test_cases}"})
|
324 |
+
st.markdown(test_cases)
|
325 |
|
326 |
+
if __name__ == "__main__":
|
327 |
+
test_case_generator = TestCaseGenerator()
|
328 |
+
test_case_generator.run()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|