# import os
# import re
# import streamlit as st
# import ast
# import json
# import openai
# from llama_index.llms.openai import OpenAI
# from llama_index.core.llms import ChatMessage
# from llama_index.llms.anthropic import Anthropic
# from llama_index.llms.mistralai import MistralAI
# import nest_asyncio
# nest_asyncio.apply()
# # import ollama
# # from llama_index.llms.ollama import Ollama
# # from llama_index.core.llms import ChatMessage
# # OpenAI credentials
# # key = os.getenv('OPENAI_API_KEY')
# # openai.api_key = key
# # os.environ["OPENAI_API_KEY"] = key
# # Anthropic credentials
# # key = os.getenv('CLAUDE_API_KEY')
# # os.environ["ANTHROPIC_API_KEY"] = key
# # Mistral
# key = os.getenv('MISTRAL_API_KEY')
# os.environ["MISTRAL_API_KEY"] = key
# # Streamlit UI
# st.title("Auto Test Case Generation using LLM")
# uploaded_files = st.file_uploader("Upload a python or Java file", type=[".py","java"], accept_multiple_files=True)
# if uploaded_files:
# for uploaded_file in uploaded_files:
# with open(f"./data/{uploaded_file.name}", 'wb') as f:
# f.write(uploaded_file.getbuffer())
# st.success("File uploaded...")
# # Check file type
# _, file_extension = os.path.splitext(uploaded_file.name)
# print(file_extension)
# st.success("Fetching list of functions...")
# file_path = f"./data/{uploaded_file.name}"
# def extract_functions_from_file(file_path, file_extension):
# if file_extension == '.py':
# with open(file_path, "r") as file:
# file_content = file.read()
# parsed_content = ast.parse(file_content)
# methods = {}
# for node in ast.walk(parsed_content):
# if isinstance(node, ast.FunctionDef):
# func_name = node.name
# func_body = ast.get_source_segment(file_content, node)
# methods[func_name] = func_body
# elif file_extension == '.java':
# with open(file_path, 'r') as file:
# lines = file.readlines()
# methods = {}
# inside_method = False
# method_name = None
# method_body = []
# brace_count = 0
# method_signature_pattern = re.compile(r'((?:public|protected|private|static|\s)*)\s+[\w<>\[\]]+\s+(\w+)\s*\([^)]*\)\s*\{')
# for line in lines:
# if not inside_method:
# match = method_signature_pattern.search(line)
# if match:
# modifiers, method_name = match.groups()
# inside_method = True
# method_body.append(line)
# brace_count = line.count('{') - line.count('}')
# else:
# method_body.append(line)
# brace_count += line.count('{') - line.count('}')
# if brace_count == 0:
# inside_method = False
# methods[method_name] = ''.join(method_body)
# method_body = []
# if 'main' in methods.keys():
# del(methods['main'])
# return methods
# functions = extract_functions_from_file(file_path, file_extension)
# list_of_functions = list(functions.keys())
# st.write(list_of_functions)
# def res(prompt, model=None):
# # response = openai.chat.completions.create(
# # model=model,
# # messages=[
# # {"role": "user",
# # "content": prompt,
# # }
# # ]
# # )
# # return response.choices[0].message.content
# response = [
# ChatMessage(role="system", content="You are a sincere and helpful coding assistant"),
# ChatMessage(role="user", content=prompt),
# ]
# # resp = Anthropic(model=model).chat(response)
# resp = MistralAI(model).chat(response)
# return resp
# # Initialize session state for chat messages
# if "messages" not in st.session_state:
# st.session_state.messages = []
# # Display chat messages from history on app rerun
# for message in st.session_state.messages:
# with st.chat_message(message["role"]):
# st.markdown(message["content"])
# # Accept user input
# if func := st.chat_input("Enter the function name for generating test cases:"):
# st.session_state.messages.append({"role": "assistant", "content": f"Generating test cases for {func}"})
# st.success(f"Generating test cases for {func}")
# func = ''.join(func.split())
# if func not in list_of_functions:
# st.write("Incorrect function name")
# else:
# snippet = functions[func]
# # Generation
# # model = "gpt-3.5-turbo"
# # model = "claude-3-haiku-20240307"
# # model = "claude-3-sonnet-20240229"
# # model = "claude-3-opus-20240229"
# model = "codestral-latest"
# # Generation
# # resp = ollama.generate(model='codellama',
# # prompt=f""" Your task is to generate unit test cases for this function : {snippet}\
# # \n\n Politely refuse if the function is not suitable for generating test cases.
# # \n\n Generate atleast 5 unit test case. Include couple of edge cases as well.
# # \n\n There should be no duplicate test cases.
# # \n\n Avoid generating repeated statements.
# # """)
# prompt=f""" Your task is to generate unit test cases for this function : \n\n{snippet}\
# \n\n Generate between 3 to 8 unique unit test cases. Include couple of edge cases as well.
# \n\n All the test cases should have the mandatory assert statement.
# \n\n Every test case should be defined as a method inside the class.
# \n\n All the test cases should have textual description.
# \n\n Politely refuse if the function is not suitable for generating test cases.
# \n\n There should be no duplicate and incomplete test case.
# \n\n Avoid generating repeated statements.
# \n\n Recheck your response before generating.
# \n\n Do not share the last Test Case.
# """
# # print(prompt)
# resp = res(prompt = prompt, model = model)
# # Post Processing
# post_prompt = f"""Except the last test case, display everything that is present in this end to end: \n\n{resp}\
# \n\n Do not add anything extra. Just copy and paste everything except the last test case.
# \n\n Do not mention the count of total number of test cases in the response.
# \n\n Do not mention this sentence - "I have excluded the last test case as per your request"
# """
# post_resp = res(prompt = post_prompt, model = model)
# st.session_state.messages.append({"role": "assistant", "content": f"{post_resp}"})
# st.markdown(post_resp)
# # st.session_state.messages.append({"role": "assistant", "content": f"{resp['response']}"})
# # st.markdown(resp['response'])
import os
import re
import ast
import streamlit as st
from llama_index.llms.openai import OpenAI
from llama_index.core.llms import ChatMessage
from llama_index.llms.anthropic import Anthropic
from llama_index.llms.mistralai import MistralAI
import nest_asyncio
class TestCaseGenerator:
def __init__(self):
nest_asyncio.apply()
self.key = os.getenv('MISTRAL_API_KEY')
os.environ["MISTRAL_API_KEY"] = self.key
self.model = "codestral-latest"
self.functions = {}
self.list_of_functions = []
def setup_streamlit_ui(self):
st.title("Auto Test Case Generation using LLM")
uploaded_files = st.file_uploader("Upload a python or Java file", type=[".py", "java"], accept_multiple_files=True)
if uploaded_files:
for uploaded_file in uploaded_files:
self.process_uploaded_file(uploaded_file)
def process_uploaded_file(self, uploaded_file):
with open(f"./data/{uploaded_file.name}", 'wb') as f:
f.write(uploaded_file.getbuffer())
st.success("File uploaded...")
_, file_extension = os.path.splitext(uploaded_file.name)
print(file_extension)
st.success("Fetching list of functions...")
file_path = f"./data/{uploaded_file.name}"
self.extract_functions_from_file(file_path, file_extension)
st.write(self.list_of_functions)
def extract_functions_from_file(self, file_path, file_extension):
if file_extension == '.py':
self.extract_python_functions(file_path)
elif file_extension == '.java':
self.extract_java_functions(file_path)
if 'main' in self.functions.keys():
del(self.functions['main'])
self.list_of_functions = list(self.functions.keys())
def extract_python_functions(self, file_path):
with open(file_path, "r") as file:
file_content = file.read()
parsed_content = ast.parse(file_content)
for node in ast.walk(parsed_content):
if isinstance(node, ast.FunctionDef):
func_name = node.name
func_body = ast.get_source_segment(file_content, node)
self.functions[func_name] = func_body
def extract_java_functions(self, file_path):
with open(file_path, 'r') as file:
lines = file.readlines()
inside_method = False
method_name = None
method_body = []
brace_count = 0
method_signature_pattern = re.compile(r'((?:public|protected|private|static|\s)*)\s+[\w<>\[\]]+\s+(\w+)\s*\([^)]*\)\s*\{')
for line in lines:
if not inside_method:
match = method_signature_pattern.search(line)
if match:
modifiers, method_name = match.groups()
inside_method = True
method_body.append(line)
brace_count = line.count('{') - line.count('}')
else:
method_body.append(line)
brace_count += line.count('{') - line.count('}')
if brace_count == 0:
inside_method = False
self.functions[method_name] = ''.join(method_body)
method_body = []
# def generate_response(self, prompt):
# response = [
# ChatMessage(role="system", content="You are a sincere and helpful coding assistant"),
# ChatMessage(role="user", content=prompt),
# ]
# resp = MistralAI(self.model).chat(response)
# return resp
def generate_response(self, prompt):
response = [
ChatMessage(role="system", content="You are tasked with generating unit test cases, including descriptions and assert statements, for a given function. You will also calculate the test coverage percentage. Follow these instructions carefully:"),
ChatMessage(role="user", content=prompt),
]
resp = MistralAI(self.model).chat(response)
return resp
def generate_test_cases(self, func):
if func not in self.list_of_functions:
st.write("Incorrect function name")
return
snippet = self.functions[func]
, file_extension = os.path.splitext(uploaded_file.name)
lang = file_extension[1:]
prompt = f"""1. You will be provided with the following inputs:
{snippet}
{lang}
2. Analyze the provided function:
- Identify the function name, parameters, and return type
- Determine the main logic and branches in the function
- Note any potential edge cases or boundary conditions
3. Generate unit test cases:
- Create at least 3-5 test cases that cover different scenarios
- Include normal cases, edge cases, and potential error conditions
- Ensure that the test cases collectively cover all branches and logic paths in the function
4. For each test case, provide:
- A brief description of the test scenario
- Input values for the function parameters
- The expected output or behavior
- An assert statement in the appropriate syntax for the given programming language
5. Calculate the test coverage percentage:
- Determine the number of code paths or branches in the function
- Count how many of these paths are covered by your test cases
- Calculate the percentage: (covered paths / total paths) * 100
6. Present your output in the following format:
Description of the test case
Input values for the function
Expected output or behaviorAssert statement in the appropriate language syntaxCalculated test coverage percentageBrief explanation of how the percentage was calculated
Remember to adapt your assert statements and syntax to the specific programming language provided. If you're unsure about the exact syntax for a particular language, use a general pseudocode format that clearly conveys the assertion logic.
"""
resp = self.generate_response(prompt)
# post_prompt = f"""Except the last test case, display everything that is present in this end to end: \n\n{resp}\
# \n\n - Do not add anything extra. Just copy and paste everything except the last test case.
# \n\n - Do not mention the count of total number of test cases in the response.
# \n\n - Do not mention this sentence - "I have excluded the last test case as per your request"
# """
# post_resp = self.generate_response(post_prompt)
return resp
def run(self):
self.setup_streamlit_ui()
if "messages" not in st.session_state:
st.session_state.messages = []
for message in st.session_state.messages:
with st.chat_message(message["role"]):
st.markdown(message["content"])
if func := st.chat_input("Enter the function name for generating test cases:"):
st.session_state.messages.append({"role": "assistant", "content": f"Generating test cases for {func}"})
st.success(f"Generating test cases for {func}")
func = ''.join(func.split())
test_cases = self.generate_test_cases(func)
st.session_state.messages.append({"role": "assistant", "content": f"{test_cases}"})
st.markdown(test_cases)
if __name__ == "__main__":
test_case_generator = TestCaseGenerator()
test_case_generator.run()