Spaces:
Runtime error
Runtime error
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import os | |
import sys | |
__dir__ = os.path.dirname(os.path.abspath(__file__)) | |
sys.path.append(__dir__) | |
sys.path.insert(0, os.path.abspath(os.path.join(__dir__, '../..'))) | |
os.environ["FLAGS_allocator_strategy"] = 'auto_growth' | |
import cv2 | |
import numpy as np | |
import time | |
import tools.infer.utility as utility | |
from ppocr.data import create_operators, transform | |
from ppocr.postprocess import build_post_process | |
from ppocr.utils.logging import get_logger | |
from ppocr.utils.utility import get_image_file_list, check_and_read | |
from ppstructure.utility import parse_args | |
from picodet_postprocess import PicoDetPostProcess | |
logger = get_logger() | |
class LayoutPredictor(object): | |
def __init__(self, args): | |
pre_process_list = [{ | |
'Resize': { | |
'size': [800, 608] | |
} | |
}, { | |
'NormalizeImage': { | |
'std': [0.229, 0.224, 0.225], | |
'mean': [0.485, 0.456, 0.406], | |
'scale': '1./255.', | |
'order': 'hwc' | |
} | |
}, { | |
'ToCHWImage': None | |
}, { | |
'KeepKeys': { | |
'keep_keys': ['image'] | |
} | |
}] | |
postprocess_params = { | |
'name': 'PicoDetPostProcess', | |
"layout_dict_path": args.layout_dict_path, | |
"score_threshold": args.layout_score_threshold, | |
"nms_threshold": args.layout_nms_threshold, | |
} | |
self.preprocess_op = create_operators(pre_process_list) | |
self.postprocess_op = build_post_process(postprocess_params) | |
self.predictor, self.input_tensor, self.output_tensors, self.config = \ | |
utility.create_predictor(args, 'layout', logger) | |
def __call__(self, img): | |
ori_im = img.copy() | |
data = {'image': img} | |
data = transform(data, self.preprocess_op) | |
img = data[0] | |
if img is None: | |
return None, 0 | |
img = np.expand_dims(img, axis=0) | |
img = img.copy() | |
preds, elapse = 0, 1 | |
starttime = time.time() | |
self.input_tensor.copy_from_cpu(img) | |
self.predictor.run() | |
np_score_list, np_boxes_list = [], [] | |
output_names = self.predictor.get_output_names() | |
num_outs = int(len(output_names) / 2) | |
for out_idx in range(num_outs): | |
np_score_list.append( | |
self.predictor.get_output_handle(output_names[out_idx]) | |
.copy_to_cpu()) | |
np_boxes_list.append( | |
self.predictor.get_output_handle(output_names[ | |
out_idx + num_outs]).copy_to_cpu()) | |
preds = dict(boxes=np_score_list, boxes_num=np_boxes_list) | |
post_preds = self.postprocess_op(ori_im, img, preds) | |
elapse = time.time() - starttime | |
return post_preds, elapse | |
def main(args): | |
image_file_list = get_image_file_list(args.image_dir) | |
layout_predictor = LayoutPredictor(args) | |
count = 0 | |
total_time = 0 | |
repeats = 50 | |
for image_file in image_file_list: | |
img, flag, _ = check_and_read(image_file) | |
if not flag: | |
img = cv2.imread(image_file) | |
if img is None: | |
logger.info("error in loading image:{}".format(image_file)) | |
continue | |
layout_res, elapse = layout_predictor(img) | |
logger.info("result: {}".format(layout_res)) | |
if count > 0: | |
total_time += elapse | |
count += 1 | |
logger.info("Predict time of {}: {}".format(image_file, elapse)) | |
if __name__ == "__main__": | |
main(parse_args()) | |