Scan_Doc_App / Rotate /ppocr /data /simple_dataset.py
datdo2717's picture
rotate
c5b5437
# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import numpy as np
import cv2
import math
import os
import json
import random
import traceback
from paddle.io import Dataset
from .imaug import transform, create_operators
class SimpleDataSet(Dataset):
def __init__(self, config, mode, logger, seed=None):
super(SimpleDataSet, self).__init__()
self.logger = logger
self.mode = mode.lower()
global_config = config['Global']
dataset_config = config[mode]['dataset']
loader_config = config[mode]['loader']
self.delimiter = dataset_config.get('delimiter', '\t')
label_file_list = dataset_config.pop('label_file_list')
data_source_num = len(label_file_list)
ratio_list = dataset_config.get("ratio_list", 1.0)
if isinstance(ratio_list, (float, int)):
ratio_list = [float(ratio_list)] * int(data_source_num)
assert len(
ratio_list
) == data_source_num, "The length of ratio_list should be the same as the file_list."
self.data_dir = dataset_config['data_dir']
self.do_shuffle = loader_config['shuffle']
self.seed = seed
logger.info("Initialize indexs of datasets:%s" % label_file_list)
self.data_lines = self.get_image_info_list(label_file_list, ratio_list)
self.data_idx_order_list = list(range(len(self.data_lines)))
if self.mode == "train" and self.do_shuffle:
self.shuffle_data_random()
self.set_epoch_as_seed(self.seed, dataset_config)
self.ops = create_operators(dataset_config['transforms'], global_config)
self.ext_op_transform_idx = dataset_config.get("ext_op_transform_idx",
2)
self.need_reset = True in [x < 1 for x in ratio_list]
def set_epoch_as_seed(self, seed, dataset_config):
if self.mode == 'train':
try:
border_map_id = [index
for index, dictionary in enumerate(dataset_config['transforms'])
if 'MakeBorderMap' in dictionary][0]
shrink_map_id = [index
for index, dictionary in enumerate(dataset_config['transforms'])
if 'MakeShrinkMap' in dictionary][0]
dataset_config['transforms'][border_map_id]['MakeBorderMap'][
'epoch'] = seed if seed is not None else 0
dataset_config['transforms'][shrink_map_id]['MakeShrinkMap'][
'epoch'] = seed if seed is not None else 0
except Exception as E:
print(E)
return
def get_image_info_list(self, file_list, ratio_list):
if isinstance(file_list, str):
file_list = [file_list]
data_lines = []
for idx, file in enumerate(file_list):
with open(file, "rb") as f:
lines = f.readlines()
if self.mode == "train" or ratio_list[idx] < 1.0:
random.seed(self.seed)
lines = random.sample(lines,
round(len(lines) * ratio_list[idx]))
data_lines.extend(lines)
return data_lines
def shuffle_data_random(self):
random.seed(self.seed)
random.shuffle(self.data_lines)
return
def _try_parse_filename_list(self, file_name):
# multiple images -> one gt label
if len(file_name) > 0 and file_name[0] == "[":
try:
info = json.loads(file_name)
file_name = random.choice(info)
except:
pass
return file_name
def get_ext_data(self):
ext_data_num = 0
for op in self.ops:
if hasattr(op, 'ext_data_num'):
ext_data_num = getattr(op, 'ext_data_num')
break
load_data_ops = self.ops[:self.ext_op_transform_idx]
ext_data = []
while len(ext_data) < ext_data_num:
file_idx = self.data_idx_order_list[np.random.randint(self.__len__(
))]
data_line = self.data_lines[file_idx]
data_line = data_line.decode('utf-8')
substr = data_line.strip("\n").split(self.delimiter)
file_name = substr[0]
file_name = self._try_parse_filename_list(file_name)
label = substr[1]
img_path = os.path.join(self.data_dir, file_name)
data = {'img_path': img_path, 'label': label}
if not os.path.exists(img_path):
continue
with open(data['img_path'], 'rb') as f:
img = f.read()
data['image'] = img
data = transform(data, load_data_ops)
if data is None:
continue
if 'polys' in data.keys():
if data['polys'].shape[1] != 4:
continue
ext_data.append(data)
return ext_data
def __getitem__(self, idx):
file_idx = self.data_idx_order_list[idx]
data_line = self.data_lines[file_idx]
try:
data_line = data_line.decode('utf-8')
substr = data_line.strip("\n").split(self.delimiter)
file_name = substr[0]
file_name = self._try_parse_filename_list(file_name)
label = substr[1]
img_path = os.path.join(self.data_dir, file_name)
data = {'img_path': img_path, 'label': label}
if not os.path.exists(img_path):
raise Exception("{} does not exist!".format(img_path))
with open(data['img_path'], 'rb') as f:
img = f.read()
data['image'] = img
data['ext_data'] = self.get_ext_data()
outs = transform(data, self.ops)
except:
self.logger.error(
"When parsing line {}, error happened with msg: {}".format(
data_line, traceback.format_exc()))
outs = None
if outs is None:
# during evaluation, we should fix the idx to get same results for many times of evaluation.
rnd_idx = np.random.randint(self.__len__(
)) if self.mode == "train" else (idx + 1) % self.__len__()
return self.__getitem__(rnd_idx)
return outs
def __len__(self):
return len(self.data_idx_order_list)
class MultiScaleDataSet(SimpleDataSet):
def __init__(self, config, mode, logger, seed=None):
super(MultiScaleDataSet, self).__init__(config, mode, logger, seed)
self.ds_width = config[mode]['dataset'].get('ds_width', False)
if self.ds_width:
self.wh_aware()
def wh_aware(self):
data_line_new = []
wh_ratio = []
for lins in self.data_lines:
data_line_new.append(lins)
lins = lins.decode('utf-8')
name, label, w, h = lins.strip("\n").split(self.delimiter)
wh_ratio.append(float(w) / float(h))
self.data_lines = data_line_new
self.wh_ratio = np.array(wh_ratio)
self.wh_ratio_sort = np.argsort(self.wh_ratio)
self.data_idx_order_list = list(range(len(self.data_lines)))
def resize_norm_img(self, data, imgW, imgH, padding=True):
img = data['image']
h = img.shape[0]
w = img.shape[1]
if not padding:
resized_image = cv2.resize(
img, (imgW, imgH), interpolation=cv2.INTER_LINEAR)
resized_w = imgW
else:
ratio = w / float(h)
if math.ceil(imgH * ratio) > imgW:
resized_w = imgW
else:
resized_w = int(math.ceil(imgH * ratio))
resized_image = cv2.resize(img, (resized_w, imgH))
resized_image = resized_image.astype('float32')
resized_image = resized_image.transpose((2, 0, 1)) / 255
resized_image -= 0.5
resized_image /= 0.5
padding_im = np.zeros((3, imgH, imgW), dtype=np.float32)
padding_im[:, :, :resized_w] = resized_image
valid_ratio = min(1.0, float(resized_w / imgW))
data['image'] = padding_im
data['valid_ratio'] = valid_ratio
return data
def __getitem__(self, properties):
# properites is a tuple, contains (width, height, index)
img_height = properties[1]
idx = properties[2]
if self.ds_width and properties[3] is not None:
wh_ratio = properties[3]
img_width = img_height * (1 if int(round(wh_ratio)) == 0 else
int(round(wh_ratio)))
file_idx = self.wh_ratio_sort[idx]
else:
file_idx = self.data_idx_order_list[idx]
img_width = properties[0]
wh_ratio = None
data_line = self.data_lines[file_idx]
try:
data_line = data_line.decode('utf-8')
substr = data_line.strip("\n").split(self.delimiter)
file_name = substr[0]
file_name = self._try_parse_filename_list(file_name)
label = substr[1]
img_path = os.path.join(self.data_dir, file_name)
data = {'img_path': img_path, 'label': label}
if not os.path.exists(img_path):
raise Exception("{} does not exist!".format(img_path))
with open(data['img_path'], 'rb') as f:
img = f.read()
data['image'] = img
data['ext_data'] = self.get_ext_data()
outs = transform(data, self.ops[:-1])
if outs is not None:
outs = self.resize_norm_img(outs, img_width, img_height)
outs = transform(outs, self.ops[-1:])
except:
self.logger.error(
"When parsing line {}, error happened with msg: {}".format(
data_line, traceback.format_exc()))
outs = None
if outs is None:
# during evaluation, we should fix the idx to get same results for many times of evaluation.
rnd_idx = (idx + 1) % self.__len__()
return self.__getitem__([img_width, img_height, rnd_idx, wh_ratio])
return outs