Spaces:
Running
on
Zero
Running
on
Zero
Commit
·
3555196
1
Parent(s):
ec8173c
fix
Browse files
app.py
CHANGED
@@ -1,16 +1,14 @@
|
|
1 |
-
|
2 |
|
3 |
-
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
|
9 |
import spaces
|
10 |
import gradio as gr
|
11 |
-
from transformers import AutoModelForCausalLM, AutoProcessor
|
12 |
-
# from transformers import Qwen2VLForConditionalGeneration # Uncomment when adding QWEN back
|
13 |
-
# from qwen_vl_utils import process_vision_info # Uncomment when adding QWEN back
|
14 |
import torch
|
15 |
import os
|
16 |
import json
|
@@ -33,15 +31,6 @@ processor = AutoProcessor.from_pretrained(
|
|
33 |
device_map='auto'
|
34 |
)
|
35 |
|
36 |
-
# # Load Qwen model (commented out for now)
|
37 |
-
# qwen_model = Qwen2VLForConditionalGeneration.from_pretrained(
|
38 |
-
# "Qwen/Qwen2-VL-7B-Instruct",
|
39 |
-
# torch_dtype=torch.bfloat16,
|
40 |
-
# attn_implementation="flash_attention_2",
|
41 |
-
# device_map="auto",
|
42 |
-
# )
|
43 |
-
# qwen_processor = AutoProcessor.from_pretrained("Qwen/Qwen2-VL-7B-Instruct")
|
44 |
-
|
45 |
class GeneralRetrievalQuery(BaseModel):
|
46 |
broad_topical_query: str
|
47 |
broad_topical_explanation: str
|
@@ -91,34 +80,6 @@ Generate the queries based on this image and provide the response in the specifi
|
|
91 |
|
92 |
prompt, pydantic_model = get_retrieval_prompt("general")
|
93 |
|
94 |
-
# def _prep_data_for_input_qwen(image):
|
95 |
-
# messages = [
|
96 |
-
# {
|
97 |
-
# "role": "user",
|
98 |
-
# "content": [
|
99 |
-
# {
|
100 |
-
# "type": "image",
|
101 |
-
# "image": image,
|
102 |
-
# },
|
103 |
-
# {"type": "text", "text": prompt},
|
104 |
-
# ],
|
105 |
-
# }
|
106 |
-
# ]
|
107 |
-
#
|
108 |
-
# text = qwen_processor.apply_chat_template(
|
109 |
-
# messages, tokenize=False, add_generation_prompt=True
|
110 |
-
# )
|
111 |
-
#
|
112 |
-
# image_inputs, video_inputs = process_vision_info(messages)
|
113 |
-
#
|
114 |
-
# return qwen_processor(
|
115 |
-
# text=[text],
|
116 |
-
# images=image_inputs,
|
117 |
-
# videos=video_inputs,
|
118 |
-
# padding=True,
|
119 |
-
# return_tensors="pt",
|
120 |
-
# )
|
121 |
-
|
122 |
def _prep_data_for_input(image):
|
123 |
return processor.process(
|
124 |
images=[image],
|
@@ -131,7 +92,7 @@ def generate_response(image):
|
|
131 |
inputs = {k: v.to(model.device).unsqueeze(0) for k, v in inputs.items()}
|
132 |
output = model.generate_from_batch(
|
133 |
inputs,
|
134 |
-
|
135 |
tokenizer=processor.tokenizer
|
136 |
)
|
137 |
generated_tokens = output[0, inputs['input_ids'].size(1):]
|
|
|
1 |
+
import subprocess # 🥲
|
2 |
|
3 |
+
subprocess.run(
|
4 |
+
"pip install flash-attn --no-build-isolation",
|
5 |
+
env={"FLASH_ATTENTION_SKIP_CUDA_BUILD": "TRUE"},
|
6 |
+
shell=True,
|
7 |
+
)
|
8 |
|
9 |
import spaces
|
10 |
import gradio as gr
|
11 |
+
from transformers import AutoModelForCausalLM, AutoProcessor, GenerationConfig
|
|
|
|
|
12 |
import torch
|
13 |
import os
|
14 |
import json
|
|
|
31 |
device_map='auto'
|
32 |
)
|
33 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
34 |
class GeneralRetrievalQuery(BaseModel):
|
35 |
broad_topical_query: str
|
36 |
broad_topical_explanation: str
|
|
|
80 |
|
81 |
prompt, pydantic_model = get_retrieval_prompt("general")
|
82 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
83 |
def _prep_data_for_input(image):
|
84 |
return processor.process(
|
85 |
images=[image],
|
|
|
92 |
inputs = {k: v.to(model.device).unsqueeze(0) for k, v in inputs.items()}
|
93 |
output = model.generate_from_batch(
|
94 |
inputs,
|
95 |
+
GenerationConfig(max_new_tokens=200, stop_token="<|endoftext|>"),
|
96 |
tokenizer=processor.tokenizer
|
97 |
)
|
98 |
generated_tokens = output[0, inputs['input_ids'].size(1):]
|