Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
File size: 7,117 Bytes
665f955 2057a2c 665f955 2057a2c abbed11 2057a2c 665f955 3408aae abbed11 3408aae 2057a2c 71e31b3 2057a2c 136373a 2057a2c 4d185df 2057a2c 136373a 2057a2c 136373a 2057a2c 136373a 2057a2c 665f955 4d185df 9ed5b2c 3408aae abbed11 2057a2c 4d185df 2057a2c 4d185df abbed11 9ed5b2c 4d185df 3408aae 9ed5b2c 4d185df 9ed5b2c 2057a2c 9ed5b2c 2057a2c 9ed5b2c 2057a2c 9ed5b2c 2057a2c 3408aae 2057a2c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 |
import logging
from contextlib import asynccontextmanager
from typing import List, Optional
import chromadb
from cashews import cache
from fastapi import FastAPI, HTTPException, Query
from httpx import AsyncClient
from huggingface_hub import DatasetCard
from pydantic import BaseModel
from starlette.responses import RedirectResponse
from starlette.status import (
HTTP_404_NOT_FOUND,
HTTP_500_INTERNAL_SERVER_ERROR,
HTTP_403_FORBIDDEN,
)
from load_card_data import get_embedding_function, get_save_path, refresh_data
# Set up logging
logging.basicConfig(
level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s"
)
logger = logging.getLogger(__name__)
# Set up caching
cache.setup("mem://?check_interval=10&size=1000")
# Initialize Chroma client
SAVE_PATH = get_save_path()
client = chromadb.PersistentClient(path=SAVE_PATH)
collection = None
async_client = AsyncClient(
follow_redirects=True,
)
@asynccontextmanager
async def lifespan(app: FastAPI):
global collection
# Startup: refresh data and initialize collection
logger.info("Starting up the application")
try:
# Create or get the collection
embedding_function = get_embedding_function()
collection = client.get_or_create_collection(
name="dataset_cards", embedding_function=embedding_function
)
logger.info("Collection initialized successfully")
# Refresh data
refresh_data()
logger.info("Data refresh completed successfully")
except Exception as e:
logger.error(f"Error during startup: {str(e)}")
raise
yield # Here the app is running and handling requests
# Shutdown: perform any cleanup
logger.info("Shutting down the application")
# Add any cleanup code here if needed
app = FastAPI(lifespan=lifespan)
@app.get("/", include_in_schema=False)
def root():
return RedirectResponse(url="/docs")
async def try_get_card(hub_id: str) -> Optional[str]:
try:
response = await async_client.get(
f"https://huggingface.co/datasets/{hub_id}/raw/main/README.md"
)
if response.status_code == 200:
card = DatasetCard(response.text)
return card.text
except Exception as e:
logger.error(f"Error fetching card for hub_id {hub_id}: {str(e)}")
return None
class QueryResult(BaseModel):
dataset_id: str
similarity: float
class QueryResponse(BaseModel):
results: List[QueryResult]
class DatasetCardNotFoundError(HTTPException):
def __init__(self, dataset_id: str):
super().__init__(
status_code=HTTP_404_NOT_FOUND,
detail=f"No dataset card available for dataset: {dataset_id}",
)
class DatasetNotForAllAudiencesError(HTTPException):
def __init__(self, dataset_id: str):
super().__init__(
status_code=HTTP_403_FORBIDDEN,
detail=f"Dataset {dataset_id} is not for all audiences and not supported in this service.",
)
@app.get("/similar", response_model=QueryResponse)
@cache(ttl="1h")
async def api_query_dataset(dataset_id: str, n: int = Query(default=10, ge=1, le=100)):
try:
logger.info(f"Querying dataset: {dataset_id}")
# Get the embedding for the given dataset_id
result = collection.get(ids=[dataset_id], include=["embeddings"])
if not result.get("embeddings"):
logger.info(f"Dataset not found: {dataset_id}")
try:
embedding_function = get_embedding_function()
card = await try_get_card(dataset_id)
if card is None:
raise DatasetCardNotFoundError(dataset_id)
embeddings = embedding_function(card)
collection.upsert(ids=[dataset_id], embeddings=embeddings[0])
logger.info(f"Dataset {dataset_id} added to collection")
result = collection.get(ids=[dataset_id], include=["embeddings"])
if result.get("not-for-all-audiences"):
raise DatasetNotForAllAudiencesError(dataset_id)
except (DatasetCardNotFoundError, DatasetNotForAllAudiencesError):
raise
except Exception as e:
logger.error(
f"Error adding dataset {dataset_id} to collection: {str(e)}"
)
raise DatasetCardNotFoundError(dataset_id) from e
embedding = result["embeddings"][0]
# Query the collection for similar datasets
query_result = collection.query(
query_embeddings=[embedding], n_results=n, include=["distances"]
)
if not query_result["ids"]:
logger.info(f"No similar datasets found for: {dataset_id}")
raise HTTPException(
status_code=HTTP_404_NOT_FOUND, detail="No similar datasets found."
)
# Prepare the response
results = [
QueryResult(dataset_id=id, similarity=1 - distance)
for id, distance in zip(
query_result["ids"][0], query_result["distances"][0]
)
]
logger.info(f"Found {len(results)} similar datasets for: {dataset_id}")
return QueryResponse(results=results)
except (HTTPException, DatasetCardNotFoundError):
raise
except Exception as e:
logger.error(f"Error querying dataset {dataset_id}: {str(e)}")
raise HTTPException(
status_code=HTTP_500_INTERNAL_SERVER_ERROR,
detail="An unexpected error occurred.",
) from e
@app.post("/similar_by_text", response_model=QueryResponse)
@cache(ttl="1h")
async def api_query_by_text(query: str, n: int = Query(default=10, ge=1, le=100)):
try:
logger.info(f"Querying datasets by text: {query}")
collection = client.get_collection(
name="dataset_cards", embedding_function=get_embedding_function()
)
print(query)
query_result = collection.query(
query_texts=query, n_results=n, include=["distances"]
)
print(query_result)
if not query_result["ids"]:
logger.info(f"No similar datasets found for query: {query}")
raise HTTPException(
status_code=HTTP_404_NOT_FOUND, detail="No similar datasets found."
)
# Prepare the response
results = [
QueryResult(dataset_id=str(id), similarity=float(1 - distance))
for id, distance in zip(
query_result["ids"][0], query_result["distances"][0]
)
]
logger.info(f"Found {len(results)} similar datasets for query: {query}")
return QueryResponse(results=results)
except Exception as e:
logger.error(f"Error querying datasets by text {query}: {str(e)}")
raise HTTPException(
status_code=HTTP_500_INTERNAL_SERVER_ERROR,
detail="An unexpected error occurred.",
) from e
if __name__ == "__main__":
import uvicorn
uvicorn.run(app, host="0.0.0.0", port=8000)
|