File size: 8,835 Bytes
665f955
2057a2c
665f955
 
 
 
de90bae
2057a2c
abbed11
 
2057a2c
665f955
3408aae
de90bae
3408aae
 
 
abbed11
b5f94b5
de90bae
cb13c5d
2057a2c
 
 
 
 
 
 
 
71e31b3
2057a2c
 
cb13c5d
2057a2c
4d185df
 
 
 
2057a2c
 
 
136373a
2057a2c
 
136373a
de90bae
a8c1b79
de90bae
 
 
 
2057a2c
 
136373a
de90bae
 
2057a2c
 
 
 
 
 
 
 
 
665f955
 
 
 
 
4d185df
 
 
 
 
 
 
 
 
 
 
 
 
9ed5b2c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3408aae
 
 
 
 
 
 
 
abbed11
2057a2c
 
b5f94b5
 
2057a2c
 
 
 
4d185df
2057a2c
4d185df
 
abbed11
9ed5b2c
4d185df
 
 
 
3408aae
 
 
9ed5b2c
4d185df
 
 
 
9ed5b2c
2057a2c
 
 
 
 
 
 
 
 
 
9ed5b2c
 
 
2057a2c
 
 
 
 
 
 
 
 
 
 
 
9ed5b2c
 
2057a2c
 
9ed5b2c
 
 
 
 
2057a2c
b5f94b5
3408aae
 
 
 
 
b5f94b5
3408aae
 
 
 
de90bae
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b5f94b5
de90bae
 
 
 
 
 
 
 
 
 
 
 
 
 
3408aae
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2057a2c
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
import logging
from contextlib import asynccontextmanager
from typing import List, Optional

import chromadb
from cashews import cache
from chromadb.utils.embedding_functions import SentenceTransformerEmbeddingFunction
from fastapi import FastAPI, HTTPException, Query
from httpx import AsyncClient
from huggingface_hub import DatasetCard
from pydantic import BaseModel
from starlette.responses import RedirectResponse
from starlette.status import (
    HTTP_403_FORBIDDEN,
    HTTP_404_NOT_FOUND,
    HTTP_500_INTERNAL_SERVER_ERROR,
)

from load_card_data import card_embedding_function, refresh_card_data
from load_viewer_data import refresh_viewer_data
from utils import get_save_path, get_collection, get_chroma_client

# Set up logging
logging.basicConfig(
    level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s"
)
logger = logging.getLogger(__name__)

# Set up caching
cache.setup("mem://?check_interval=10&size=1000")

# Initialize Chroma client
client = get_chroma_client()

async_client = AsyncClient(
    follow_redirects=True,
)


@asynccontextmanager
async def lifespan(app: FastAPI):
    # Startup: refresh data and initialize collection
    logger.info("Starting up the application")
    try:
        # Refresh data
        logger.info("Starting refresh of card data")
        refresh_card_data()
        logger.info("Card data refresh completed")
        logger.info("Starting refresh of viewer data")
        await refresh_viewer_data()
        logger.info("Viewer data refresh completed")
        logger.info("Data refresh completed successfully")
    except Exception as e:
        logger.error(f"Error during startup: {str(e)}")
        logger.warning("Application starting with potential data issues")
    yield

    # Shutdown: perform any cleanup
    logger.info("Shutting down the application")
    # Add any cleanup code here if needed


app = FastAPI(lifespan=lifespan)


@app.get("/", include_in_schema=False)
def root():
    return RedirectResponse(url="/docs")


async def try_get_card(hub_id: str) -> Optional[str]:
    try:
        response = await async_client.get(
            f"https://huggingface.co/datasets/{hub_id}/raw/main/README.md"
        )
        if response.status_code == 200:
            card = DatasetCard(response.text)
            return card.text
    except Exception as e:
        logger.error(f"Error fetching card for hub_id {hub_id}: {str(e)}")
        return None


class QueryResult(BaseModel):
    dataset_id: str
    similarity: float


class QueryResponse(BaseModel):
    results: List[QueryResult]


class DatasetCardNotFoundError(HTTPException):
    def __init__(self, dataset_id: str):
        super().__init__(
            status_code=HTTP_404_NOT_FOUND,
            detail=f"No dataset card available for dataset: {dataset_id}",
        )


class DatasetNotForAllAudiencesError(HTTPException):
    def __init__(self, dataset_id: str):
        super().__init__(
            status_code=HTTP_403_FORBIDDEN,
            detail=f"Dataset {dataset_id} is not for all audiences and not supported in this service.",
        )


@app.get("/similar", response_model=QueryResponse)
@cache(ttl="1h")
async def api_query_dataset(dataset_id: str, n: int = Query(default=10, ge=1, le=100)):
    embedding_function = card_embedding_function()
    collection = get_collection(client, embedding_function, "dataset_cards")
    try:
        logger.info(f"Querying dataset: {dataset_id}")
        # Get the embedding for the given dataset_id
        result = collection.get(ids=[dataset_id], include=["embeddings"])
        if not result.get("embeddings"):
            logger.info(f"Dataset not found: {dataset_id}")
            try:
                card = await try_get_card(dataset_id)
                if card is None:
                    raise DatasetCardNotFoundError(dataset_id)
                embeddings = embedding_function(card)
                collection.upsert(ids=[dataset_id], embeddings=embeddings[0])
                logger.info(f"Dataset {dataset_id} added to collection")
                result = collection.get(ids=[dataset_id], include=["embeddings"])
                if result.get("not-for-all-audiences"):
                    raise DatasetNotForAllAudiencesError(dataset_id)
            except (DatasetCardNotFoundError, DatasetNotForAllAudiencesError):
                raise
            except Exception as e:
                logger.error(
                    f"Error adding dataset {dataset_id} to collection: {str(e)}"
                )
                raise DatasetCardNotFoundError(dataset_id) from e

        embedding = result["embeddings"][0]

        # Query the collection for similar datasets
        query_result = collection.query(
            query_embeddings=[embedding], n_results=n, include=["distances"]
        )

        if not query_result["ids"]:
            logger.info(f"No similar datasets found for: {dataset_id}")
            raise HTTPException(
                status_code=HTTP_404_NOT_FOUND, detail="No similar datasets found."
            )

        # Prepare the response
        results = [
            QueryResult(dataset_id=id, similarity=1 - distance)
            for id, distance in zip(
                query_result["ids"][0], query_result["distances"][0]
            )
        ]

        logger.info(f"Found {len(results)} similar datasets for: {dataset_id}")
        return QueryResponse(results=results)

    except (HTTPException, DatasetCardNotFoundError):
        raise
    except Exception as e:
        logger.error(f"Error querying dataset {dataset_id}: {str(e)}")
        raise HTTPException(
            status_code=HTTP_500_INTERNAL_SERVER_ERROR,
            detail="An unexpected error occurred.",
        ) from e


@app.get("/similar-text", response_model=QueryResponse)
@cache(ttl="1h")
async def api_query_by_text(query: str, n: int = Query(default=10, ge=1, le=100)):
    try:
        logger.info(f"Querying datasets by text: {query}")
        collection = client.get_collection(
            name="dataset_cards", embedding_function=card_embedding_function()
        )
        print(query)
        query_result = collection.query(
            query_texts=query, n_results=n, include=["distances"]
        )
        print(query_result)

        if not query_result["ids"]:
            logger.info(f"No similar datasets found for query: {query}")
            raise HTTPException(
                status_code=HTTP_404_NOT_FOUND, detail="No similar datasets found."
            )

        # Prepare the response
        results = [
            QueryResult(dataset_id=str(id), similarity=float(1 - distance))
            for id, distance in zip(
                query_result["ids"][0], query_result["distances"][0]
            )
        ]
        logger.info(f"Found {len(results)} similar datasets for query: {query}")
        return QueryResponse(results=results)

    except Exception as e:
        logger.error(f"Error querying datasets by text {query}: {str(e)}")
        raise HTTPException(
            status_code=HTTP_500_INTERNAL_SERVER_ERROR,
            detail="An unexpected error occurred.",
        ) from e


@app.get("/search-viewer", response_model=QueryResponse)
@cache(ttl="1h")
async def api_search_viewer(query: str, n: int = Query(default=10, ge=1, le=100)):
    try:
        embedding_function = SentenceTransformerEmbeddingFunction(
            model_name="davanstrien/dataset-viewer-descriptions-processed-st",
            trust_remote_code=True,
        )
        collection = client.get_collection(
            name="dataset-viewer-descriptions",
            embedding_function=embedding_function,
        )
        query = f"USER_QUERY: {query}"
        query_result = collection.query(
            query_texts=query, n_results=n, include=["distances"]
        )
        print(query_result)

        if not query_result["ids"]:
            logger.info(f"No similar datasets found for query: {query}")
            raise HTTPException(
                status_code=HTTP_404_NOT_FOUND, detail="No similar datasets found."
            )

        # Prepare the response
        results = [
            QueryResult(dataset_id=str(id), similarity=float(1 - distance))
            for id, distance in zip(
                query_result["ids"][0], query_result["distances"][0]
            )
        ]
        logger.info(f"Found {len(results)} similar datasets for query: {query}")
        return QueryResponse(results=results)

    except Exception as e:
        logger.error(f"Error querying datasets by text {query}: {str(e)}")
        raise HTTPException(
            status_code=HTTP_500_INTERNAL_SERVER_ERROR,
            detail="An unexpected error occurred.",
        ) from e


if __name__ == "__main__":
    import uvicorn

    uvicorn.run(app, host="0.0.0.0", port=8000)