Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
File size: 8,831 Bytes
665f955 2057a2c 665f955 de90bae 2057a2c abbed11 2057a2c 665f955 3408aae de90bae 3408aae abbed11 b5f94b5 de90bae cb13c5d 2057a2c 71e31b3 2057a2c cb13c5d 2057a2c 4d185df 2057a2c 136373a 2057a2c 136373a de90bae a8c1b79 de90bae 2057a2c 136373a de90bae 2057a2c 665f955 4d185df 9ed5b2c 3408aae abbed11 2057a2c b5f94b5 2057a2c 4d185df 2057a2c 4d185df abbed11 9ed5b2c 4d185df 3408aae 9ed5b2c 4d185df 9ed5b2c 2057a2c 9ed5b2c 2057a2c 9ed5b2c 2057a2c 9ed5b2c 2057a2c b5f94b5 3408aae b5f94b5 3408aae de90bae b5f94b5 de90bae 1d40966 de90bae 3408aae 2057a2c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 |
import logging
from contextlib import asynccontextmanager
from typing import List, Optional
import chromadb
from cashews import cache
from chromadb.utils.embedding_functions import SentenceTransformerEmbeddingFunction
from fastapi import FastAPI, HTTPException, Query
from httpx import AsyncClient
from huggingface_hub import DatasetCard
from pydantic import BaseModel
from starlette.responses import RedirectResponse
from starlette.status import (
HTTP_403_FORBIDDEN,
HTTP_404_NOT_FOUND,
HTTP_500_INTERNAL_SERVER_ERROR,
)
from load_card_data import card_embedding_function, refresh_card_data
from load_viewer_data import refresh_viewer_data
from utils import get_save_path, get_collection, get_chroma_client
# Set up logging
logging.basicConfig(
level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s"
)
logger = logging.getLogger(__name__)
# Set up caching
cache.setup("mem://?check_interval=10&size=1000")
# Initialize Chroma client
client = get_chroma_client()
async_client = AsyncClient(
follow_redirects=True,
)
@asynccontextmanager
async def lifespan(app: FastAPI):
# Startup: refresh data and initialize collection
logger.info("Starting up the application")
try:
# Refresh data
logger.info("Starting refresh of card data")
refresh_card_data()
logger.info("Card data refresh completed")
logger.info("Starting refresh of viewer data")
await refresh_viewer_data()
logger.info("Viewer data refresh completed")
logger.info("Data refresh completed successfully")
except Exception as e:
logger.error(f"Error during startup: {str(e)}")
logger.warning("Application starting with potential data issues")
yield
# Shutdown: perform any cleanup
logger.info("Shutting down the application")
# Add any cleanup code here if needed
app = FastAPI(lifespan=lifespan)
@app.get("/", include_in_schema=False)
def root():
return RedirectResponse(url="/docs")
async def try_get_card(hub_id: str) -> Optional[str]:
try:
response = await async_client.get(
f"https://huggingface.co/datasets/{hub_id}/raw/main/README.md"
)
if response.status_code == 200:
card = DatasetCard(response.text)
return card.text
except Exception as e:
logger.error(f"Error fetching card for hub_id {hub_id}: {str(e)}")
return None
class QueryResult(BaseModel):
dataset_id: str
similarity: float
class QueryResponse(BaseModel):
results: List[QueryResult]
class DatasetCardNotFoundError(HTTPException):
def __init__(self, dataset_id: str):
super().__init__(
status_code=HTTP_404_NOT_FOUND,
detail=f"No dataset card available for dataset: {dataset_id}",
)
class DatasetNotForAllAudiencesError(HTTPException):
def __init__(self, dataset_id: str):
super().__init__(
status_code=HTTP_403_FORBIDDEN,
detail=f"Dataset {dataset_id} is not for all audiences and not supported in this service.",
)
@app.get("/similar", response_model=QueryResponse)
@cache(ttl="1h")
async def api_query_dataset(dataset_id: str, n: int = Query(default=10, ge=1, le=100)):
embedding_function = card_embedding_function()
collection = get_collection(client, embedding_function, "dataset_cards")
try:
logger.info(f"Querying dataset: {dataset_id}")
# Get the embedding for the given dataset_id
result = collection.get(ids=[dataset_id], include=["embeddings"])
if not result.get("embeddings"):
logger.info(f"Dataset not found: {dataset_id}")
try:
card = await try_get_card(dataset_id)
if card is None:
raise DatasetCardNotFoundError(dataset_id)
embeddings = embedding_function(card)
collection.upsert(ids=[dataset_id], embeddings=embeddings[0])
logger.info(f"Dataset {dataset_id} added to collection")
result = collection.get(ids=[dataset_id], include=["embeddings"])
if result.get("not-for-all-audiences"):
raise DatasetNotForAllAudiencesError(dataset_id)
except (DatasetCardNotFoundError, DatasetNotForAllAudiencesError):
raise
except Exception as e:
logger.error(
f"Error adding dataset {dataset_id} to collection: {str(e)}"
)
raise DatasetCardNotFoundError(dataset_id) from e
embedding = result["embeddings"][0]
# Query the collection for similar datasets
query_result = collection.query(
query_embeddings=[embedding], n_results=n, include=["distances"]
)
if not query_result["ids"]:
logger.info(f"No similar datasets found for: {dataset_id}")
raise HTTPException(
status_code=HTTP_404_NOT_FOUND, detail="No similar datasets found."
)
# Prepare the response
results = [
QueryResult(dataset_id=id, similarity=1 - distance)
for id, distance in zip(
query_result["ids"][0], query_result["distances"][0]
)
]
logger.info(f"Found {len(results)} similar datasets for: {dataset_id}")
return QueryResponse(results=results)
except (HTTPException, DatasetCardNotFoundError):
raise
except Exception as e:
logger.error(f"Error querying dataset {dataset_id}: {str(e)}")
raise HTTPException(
status_code=HTTP_500_INTERNAL_SERVER_ERROR,
detail="An unexpected error occurred.",
) from e
@app.get("/similar-text", response_model=QueryResponse)
@cache(ttl="1h")
async def api_query_by_text(query: str, n: int = Query(default=10, ge=1, le=100)):
try:
logger.info(f"Querying datasets by text: {query}")
collection = client.get_collection(
name="dataset_cards", embedding_function=card_embedding_function()
)
print(query)
query_result = collection.query(
query_texts=query, n_results=n, include=["distances"]
)
print(query_result)
if not query_result["ids"]:
logger.info(f"No similar datasets found for query: {query}")
raise HTTPException(
status_code=HTTP_404_NOT_FOUND, detail="No similar datasets found."
)
# Prepare the response
results = [
QueryResult(dataset_id=str(id), similarity=float(1 - distance))
for id, distance in zip(
query_result["ids"][0], query_result["distances"][0]
)
]
logger.info(f"Found {len(results)} similar datasets for query: {query}")
return QueryResponse(results=results)
except Exception as e:
logger.error(f"Error querying datasets by text {query}: {str(e)}")
raise HTTPException(
status_code=HTTP_500_INTERNAL_SERVER_ERROR,
detail="An unexpected error occurred.",
) from e
@app.get("/search-viewer", response_model=QueryResponse)
@cache(ttl="1h")
async def api_search_viewer(query: str, n: int = Query(default=10, ge=1, le=100)):
try:
embedding_function = SentenceTransformerEmbeddingFunction(
model_name="davanstrien/query-to-dataset-viewer-descriptions",
trust_remote_code=True,
)
collection = client.get_collection(
name="dataset-viewer-descriptions",
embedding_function=embedding_function,
)
query = f"USER_QUERY: {query}"
query_result = collection.query(
query_texts=query, n_results=n, include=["distances"]
)
print(query_result)
if not query_result["ids"]:
logger.info(f"No similar datasets found for query: {query}")
raise HTTPException(
status_code=HTTP_404_NOT_FOUND, detail="No similar datasets found."
)
# Prepare the response
results = [
QueryResult(dataset_id=str(id), similarity=float(1 - distance))
for id, distance in zip(
query_result["ids"][0], query_result["distances"][0]
)
]
logger.info(f"Found {len(results)} similar datasets for query: {query}")
return QueryResponse(results=results)
except Exception as e:
logger.error(f"Error querying datasets by text {query}: {str(e)}")
raise HTTPException(
status_code=HTTP_500_INTERNAL_SERVER_ERROR,
detail="An unexpected error occurred.",
) from e
if __name__ == "__main__":
import uvicorn
uvicorn.run(app, host="0.0.0.0", port=8000)
|