Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
davanstrien
HF staff
chore: Refactor load_data.py for improved readability and maintainability
5e2248d
import chromadb | |
import platform | |
import polars as pl | |
from chromadb.utils import embedding_functions | |
from typing import List, Tuple, Optional, Literal | |
from huggingface_hub import InferenceClient | |
from tqdm.contrib.concurrent import thread_map | |
from dotenv import load_dotenv | |
import os | |
from datetime import datetime | |
import stamina | |
import requests | |
import logging | |
# Set up logging | |
logging.basicConfig( | |
level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s" | |
) | |
logger = logging.getLogger(__name__) | |
load_dotenv() | |
# Top-level module variables | |
HF_TOKEN = os.getenv("HF_TOKEN") | |
EMBEDDING_MODEL_NAME = "Snowflake/snowflake-arctic-embed-m-long" | |
INFERENCE_MODEL_URL = ( | |
"https://pqzap00ebpl1ydt4.us-east-1.aws.endpoints.huggingface.cloud" | |
) | |
DATASET_PARQUET_URL = "hf://datasets/librarian-bots/dataset_cards_with_metadata_with_embeddings/data/train-00000-of-00001.parquet" | |
COLLECTION_NAME = "dataset_cards" | |
MAX_EMBEDDING_LENGTH = 8192 | |
def get_save_path() -> Literal["chroma/"] | Literal["/data/chroma/"]: | |
path = "chroma/" if platform.system() == "Darwin" else "/data/chroma/" | |
logger.info(f"Using save path: {path}") | |
return path | |
SAVE_PATH = get_save_path() | |
def get_chroma_client(): | |
logger.info("Initializing Chroma client") | |
return chromadb.PersistentClient(path=SAVE_PATH) | |
def get_embedding_function(): | |
logger.info(f"Initializing embedding function with model: {EMBEDDING_MODEL_NAME}") | |
return embedding_functions.SentenceTransformerEmbeddingFunction( | |
model_name=EMBEDDING_MODEL_NAME, trust_remote_code=True | |
) | |
def get_collection(chroma_client, embedding_function): | |
logger.info(f"Getting or creating collection: {COLLECTION_NAME}") | |
return chroma_client.create_collection( | |
name=COLLECTION_NAME, get_or_create=True, embedding_function=embedding_function | |
) | |
def get_last_modified_in_collection(collection) -> datetime | None: | |
logger.info("Fetching last modified date from collection") | |
all_items = collection.get(include=["metadatas"]) | |
if last_modified := [ | |
datetime.fromisoformat(item["last_modified"]) for item in all_items["metadatas"] | |
]: | |
last_mod = max(last_modified) | |
logger.info(f"Last modified date: {last_mod}") | |
return last_mod | |
else: | |
logger.info("No last modified date found") | |
return None | |
def parse_markdown_column( | |
df: pl.DataFrame, markdown_column: str, dataset_id_column: str | |
) -> pl.DataFrame: | |
logger.info("Parsing markdown column") | |
return df.with_columns( | |
parsed_markdown=( | |
pl.col(markdown_column) | |
.str.extract(r"(?s)^---.*?---\s*(.*)", group_index=1) | |
.fill_null(pl.col(markdown_column)) | |
.str.strip_chars() | |
), | |
prepended_markdown=( | |
pl.concat_str( | |
[ | |
pl.lit("Dataset ID "), | |
pl.col(dataset_id_column).cast(pl.Utf8), | |
pl.lit("\n\n"), | |
pl.col(markdown_column) | |
.str.extract(r"(?s)^---.*?---\s*(.*)", group_index=1) | |
.fill_null(pl.col(markdown_column)) | |
.str.strip_chars(), | |
] | |
) | |
), | |
) | |
def load_cards( | |
min_len: int = 50, | |
min_likes: int | None = None, | |
last_modified: Optional[datetime] = None, | |
) -> Optional[Tuple[List[str], List[str], List[datetime]]]: | |
logger.info( | |
f"Loading cards with min_len={min_len}, min_likes={min_likes}, last_modified={last_modified}" | |
) | |
df = pl.read_parquet(DATASET_PARQUET_URL) | |
df = parse_markdown_column(df, "card", "datasetId") | |
df = df.with_columns(pl.col("parsed_markdown").str.len_chars().alias("card_len")) | |
df = df.filter(pl.col("card_len") > min_len) | |
if min_likes: | |
df = df.filter(pl.col("likes") > min_likes) | |
if last_modified: | |
df = df.filter(pl.col("last_modified") > last_modified) | |
if len(df) == 0: | |
logger.info("No cards found matching criteria") | |
return None | |
cards = df.get_column("prepended_markdown").to_list() | |
model_ids = df.get_column("datasetId").to_list() | |
last_modifieds = df.get_column("last_modified").to_list() | |
logger.info(f"Loaded {len(cards)} cards") | |
return cards, model_ids, last_modifieds | |
def embed_card(text, client): | |
text = text[:MAX_EMBEDDING_LENGTH] | |
return client.feature_extraction(text) | |
def get_inference_client(): | |
logger.info(f"Initializing inference client with model: {INFERENCE_MODEL_URL}") | |
return InferenceClient( | |
model=INFERENCE_MODEL_URL, | |
token=HF_TOKEN, | |
) | |
def refresh_data(min_len: int = 200, min_likes: Optional[int] = None): | |
logger.info(f"Starting data refresh with min_len={min_len}, min_likes={min_likes}") | |
chroma_client = get_chroma_client() | |
embedding_function = get_embedding_function() | |
collection = get_collection(chroma_client, embedding_function) | |
most_recent = get_last_modified_in_collection(collection) | |
if data := load_cards( | |
min_len=min_len, min_likes=min_likes, last_modified=most_recent | |
): | |
_create_and_upsert_embeddings(data, collection) | |
else: | |
logger.info("No new data to refresh") | |
def _create_and_upsert_embeddings(data, collection): | |
cards, model_ids, last_modifieds = data | |
logger.info("Embedding cards...") | |
inference_client = get_inference_client() | |
results = thread_map(lambda card: embed_card(card, inference_client), cards) | |
logger.info(f"Upserting {len(model_ids)} items to collection") | |
collection.upsert( | |
ids=model_ids, | |
embeddings=[embedding.tolist()[0] for embedding in results], | |
metadatas=[{"last_modified": str(lm)} for lm in last_modifieds], | |
) | |
logger.info("Data refresh completed successfully") | |
if __name__ == "__main__": | |
refresh_data() | |