davanstrien's picture
davanstrien HF staff
try adding missing cards
4d185df
raw
history blame
4.51 kB
import logging
from contextlib import asynccontextmanager
from typing import List, Optional
import chromadb
from cashews import cache
from fastapi import FastAPI, HTTPException, Query
from pydantic import BaseModel
from starlette.responses import RedirectResponse
from httpx import AsyncClient
from load_data import get_embedding_function, get_save_path, refresh_data
from huggingface_hub import DatasetCard
# Set up logging
logging.basicConfig(
level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s"
)
logger = logging.getLogger(__name__)
# Set up caching
cache.setup("mem://?check_interval=10&size=10000")
# Initialize Chroma client
SAVE_PATH = get_save_path()
client = chromadb.PersistentClient(path=SAVE_PATH)
collection = None
async_client = AsyncClient(
follow_redirects=True,
)
class QueryResult(BaseModel):
dataset_id: str
similarity: float
class QueryResponse(BaseModel):
results: List[QueryResult]
@asynccontextmanager
async def lifespan(app: FastAPI):
global collection
# Startup: refresh data and initialize collection
logger.info("Starting up the application")
try:
# Create or get the collection
embedding_function = get_embedding_function()
collection = client.get_or_create_collection(
name="dataset_cards", embedding_function=embedding_function
)
logger.info("Collection initialized successfully")
# Refresh data
refresh_data()
logger.info("Data refresh completed successfully")
except Exception as e:
logger.error(f"Error during startup: {str(e)}")
raise
yield # Here the app is running and handling requests
# Shutdown: perform any cleanup
logger.info("Shutting down the application")
# Add any cleanup code here if needed
app = FastAPI(lifespan=lifespan)
@app.get("/", include_in_schema=False)
def root():
return RedirectResponse(url="/docs")
async def try_get_card(hub_id: str) -> Optional[str]:
try:
response = await async_client.get(
f"https://huggingface.co/datasets/{hub_id}/raw/main/README.md"
)
if response.status_code == 200:
card = DatasetCard(response.text)
return card.text
except Exception as e:
logger.error(f"Error fetching card for hub_id {hub_id}: {str(e)}")
return None
@app.get("/query", response_model=Optional[QueryResponse])
@cache(ttl="1h")
async def api_query_dataset(dataset_id: str, n: int = Query(default=10, ge=1, le=100)):
try:
logger.info(f"Querying dataset: {dataset_id}")
# Get the embedding for the given dataset_id
result = collection.get(ids=[dataset_id], include=["embeddings"])
if not result.get("embeddings"):
logger.info(f"Dataset not found: {dataset_id}")
try:
embedding_function = get_embedding_function()
card = await try_get_card(dataset_id)
embeddings = embedding_function(card)
collection.upsert(ids=[dataset_id], embeddings=embeddings[0])
logger.info(f"Dataset {dataset_id} added to collection")
result = collection.get(ids=[dataset_id], include=["embeddings"])
except Exception as e:
logger.error(
f"Error adding dataset {dataset_id} to collection: {str(e)}"
)
raise HTTPException(status_code=404, detail="Dataset not found") from e
embedding = result["embeddings"][0]
# Query the collection for similar datasets
query_result = collection.query(
query_embeddings=[embedding], n_results=n, include=["distances"]
)
if not query_result["ids"]:
logger.info(f"No similar datasets found for: {dataset_id}")
return None
# Prepare the response
results = [
QueryResult(dataset_id=id, similarity=1 - distance)
for id, distance in zip(
query_result["ids"][0], query_result["distances"][0]
)
]
logger.info(f"Found {len(results)} similar datasets for: {dataset_id}")
return QueryResponse(results=results)
except Exception as e:
logger.error(f"Error querying dataset {dataset_id}: {str(e)}")
raise HTTPException(status_code=500, detail=str(e)) from e
if __name__ == "__main__":
import uvicorn
uvicorn.run(app, host="0.0.0.0", port=8000)