davanstrien's picture
davanstrien HF staff
global client
cb13c5d
raw
history blame
8.84 kB
import logging
from contextlib import asynccontextmanager
from typing import List, Optional
import chromadb
from cashews import cache
from chromadb.utils.embedding_functions import SentenceTransformerEmbeddingFunction
from fastapi import FastAPI, HTTPException, Query
from httpx import AsyncClient
from huggingface_hub import DatasetCard
from pydantic import BaseModel
from starlette.responses import RedirectResponse
from starlette.status import (
HTTP_403_FORBIDDEN,
HTTP_404_NOT_FOUND,
HTTP_500_INTERNAL_SERVER_ERROR,
)
from load_card_data import card_embedding_function, refresh_card_data
from load_viewer_data import refresh_viewer_data
from utils import get_save_path, get_collection, get_chroma_client
# Set up logging
logging.basicConfig(
level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s"
)
logger = logging.getLogger(__name__)
# Set up caching
cache.setup("mem://?check_interval=10&size=1000")
# Initialize Chroma client
client = get_chroma_client()
async_client = AsyncClient(
follow_redirects=True,
)
@asynccontextmanager
async def lifespan(app: FastAPI):
# Startup: refresh data and initialize collection
logger.info("Starting up the application")
try:
# Refresh data
logger.info("Starting refresh of card data")
refresh_card_data()
logger.info("Card data refresh completed")
logger.info("Starting refresh of viewer data")
await refresh_viewer_data()
logger.info("Viewer data refresh completed")
logger.info("Data refresh completed successfully")
except Exception as e:
logger.error(f"Error during startup: {str(e)}")
logger.warning("Application starting with potential data issues")
yield
# Shutdown: perform any cleanup
logger.info("Shutting down the application")
# Add any cleanup code here if needed
app = FastAPI(lifespan=lifespan)
@app.get("/", include_in_schema=False)
def root():
return RedirectResponse(url="/docs")
async def try_get_card(hub_id: str) -> Optional[str]:
try:
response = await async_client.get(
f"https://huggingface.co/datasets/{hub_id}/raw/main/README.md"
)
if response.status_code == 200:
card = DatasetCard(response.text)
return card.text
except Exception as e:
logger.error(f"Error fetching card for hub_id {hub_id}: {str(e)}")
return None
class QueryResult(BaseModel):
dataset_id: str
similarity: float
class QueryResponse(BaseModel):
results: List[QueryResult]
class DatasetCardNotFoundError(HTTPException):
def __init__(self, dataset_id: str):
super().__init__(
status_code=HTTP_404_NOT_FOUND,
detail=f"No dataset card available for dataset: {dataset_id}",
)
class DatasetNotForAllAudiencesError(HTTPException):
def __init__(self, dataset_id: str):
super().__init__(
status_code=HTTP_403_FORBIDDEN,
detail=f"Dataset {dataset_id} is not for all audiences and not supported in this service.",
)
@app.get("/similar", response_model=QueryResponse)
@cache(ttl="1h")
async def api_query_dataset(dataset_id: str, n: int = Query(default=10, ge=1, le=100)):
embedding_function = card_embedding_function()
collection = get_collection(client, embedding_function, "dataset_cards")
try:
logger.info(f"Querying dataset: {dataset_id}")
# Get the embedding for the given dataset_id
result = collection.get(ids=[dataset_id], include=["embeddings"])
if not result.get("embeddings"):
logger.info(f"Dataset not found: {dataset_id}")
try:
card = await try_get_card(dataset_id)
if card is None:
raise DatasetCardNotFoundError(dataset_id)
embeddings = embedding_function(card)
collection.upsert(ids=[dataset_id], embeddings=embeddings[0])
logger.info(f"Dataset {dataset_id} added to collection")
result = collection.get(ids=[dataset_id], include=["embeddings"])
if result.get("not-for-all-audiences"):
raise DatasetNotForAllAudiencesError(dataset_id)
except (DatasetCardNotFoundError, DatasetNotForAllAudiencesError):
raise
except Exception as e:
logger.error(
f"Error adding dataset {dataset_id} to collection: {str(e)}"
)
raise DatasetCardNotFoundError(dataset_id) from e
embedding = result["embeddings"][0]
# Query the collection for similar datasets
query_result = collection.query(
query_embeddings=[embedding], n_results=n, include=["distances"]
)
if not query_result["ids"]:
logger.info(f"No similar datasets found for: {dataset_id}")
raise HTTPException(
status_code=HTTP_404_NOT_FOUND, detail="No similar datasets found."
)
# Prepare the response
results = [
QueryResult(dataset_id=id, similarity=1 - distance)
for id, distance in zip(
query_result["ids"][0], query_result["distances"][0]
)
]
logger.info(f"Found {len(results)} similar datasets for: {dataset_id}")
return QueryResponse(results=results)
except (HTTPException, DatasetCardNotFoundError):
raise
except Exception as e:
logger.error(f"Error querying dataset {dataset_id}: {str(e)}")
raise HTTPException(
status_code=HTTP_500_INTERNAL_SERVER_ERROR,
detail="An unexpected error occurred.",
) from e
@app.get("/similar-text", response_model=QueryResponse)
@cache(ttl="1h")
async def api_query_by_text(query: str, n: int = Query(default=10, ge=1, le=100)):
try:
logger.info(f"Querying datasets by text: {query}")
collection = client.get_collection(
name="dataset_cards", embedding_function=card_embedding_function()
)
print(query)
query_result = collection.query(
query_texts=query, n_results=n, include=["distances"]
)
print(query_result)
if not query_result["ids"]:
logger.info(f"No similar datasets found for query: {query}")
raise HTTPException(
status_code=HTTP_404_NOT_FOUND, detail="No similar datasets found."
)
# Prepare the response
results = [
QueryResult(dataset_id=str(id), similarity=float(1 - distance))
for id, distance in zip(
query_result["ids"][0], query_result["distances"][0]
)
]
logger.info(f"Found {len(results)} similar datasets for query: {query}")
return QueryResponse(results=results)
except Exception as e:
logger.error(f"Error querying datasets by text {query}: {str(e)}")
raise HTTPException(
status_code=HTTP_500_INTERNAL_SERVER_ERROR,
detail="An unexpected error occurred.",
) from e
@app.get("/search-viewer", response_model=QueryResponse)
@cache(ttl="1h")
async def api_search_viewer(query: str, n: int = Query(default=10, ge=1, le=100)):
try:
embedding_function = SentenceTransformerEmbeddingFunction(
model_name="davanstrien/dataset-viewer-descriptions-processed-st",
trust_remote_code=True,
)
collection = client.get_collection(
name="dataset-viewer-descriptions",
embedding_function=embedding_function,
)
query = f"USER_QUERY: {query}"
query_result = collection.query(
query_texts=query, n_results=n, include=["distances"]
)
print(query_result)
if not query_result["ids"]:
logger.info(f"No similar datasets found for query: {query}")
raise HTTPException(
status_code=HTTP_404_NOT_FOUND, detail="No similar datasets found."
)
# Prepare the response
results = [
QueryResult(dataset_id=str(id), similarity=float(1 - distance))
for id, distance in zip(
query_result["ids"][0], query_result["distances"][0]
)
]
logger.info(f"Found {len(results)} similar datasets for query: {query}")
return QueryResponse(results=results)
except Exception as e:
logger.error(f"Error querying datasets by text {query}: {str(e)}")
raise HTTPException(
status_code=HTTP_500_INTERNAL_SERVER_ERROR,
detail="An unexpected error occurred.",
) from e
if __name__ == "__main__":
import uvicorn
uvicorn.run(app, host="0.0.0.0", port=8000)