davanstrien's picture
davanstrien HF staff
Add error handling to api_query_dataset function
f04a3dc
raw
history blame
2.85 kB
from typing import Optional, List
from contextlib import asynccontextmanager
from fastapi import FastAPI, HTTPException, Query
from pydantic import BaseModel
import chromadb
import logging
from load_data import get_save_path, refresh_data
from cashews import cache
# Set up logging
logging.basicConfig(
level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s"
)
logger = logging.getLogger(__name__)
# Set up caching
cache.setup("mem://?check_interval=10&size=10000")
# Initialize Chroma client
SAVE_PATH = get_save_path()
client = chromadb.PersistentClient(path=SAVE_PATH)
collection = client.get_collection("dataset_cards")
class QueryResult(BaseModel):
dataset_id: str
similarity: float
class QueryResponse(BaseModel):
results: List[QueryResult]
@asynccontextmanager
async def lifespan(app: FastAPI):
# Startup: refresh data
logger.info("Starting up the application")
try:
refresh_data()
logger.info("Data refresh completed successfully")
except Exception as e:
logger.error(f"Error during data refresh: {str(e)}")
yield # Here the app is running and handling requests
# Shutdown: perform any cleanup
logger.info("Shutting down the application")
# Add any cleanup code here if needed
app = FastAPI(lifespan=lifespan)
@app.get("/query", response_model=Optional[QueryResponse])
@cache(ttl="1h")
async def api_query_dataset(dataset_id: str, n: int = Query(default=10, ge=1, le=100)):
try:
logger.info(f"Querying dataset: {dataset_id}")
# Get the embedding for the given dataset_id
result = collection.get(ids=[dataset_id], include=["embeddings"])
if not result["embeddings"]:
logger.info(f"Dataset not found: {dataset_id}")
raise HTTPException(status_code=404, detail="Dataset not found")
embedding = result["embeddings"][0]
# Query the collection for similar datasets
query_result = collection.query(
query_embeddings=[embedding], n_results=n, include=["distances"]
)
if not query_result["ids"]:
logger.info(f"No similar datasets found for: {dataset_id}")
return None
# Prepare the response
results = [
QueryResult(dataset_id=id, similarity=1 - distance)
for id, distance in zip(
query_result["ids"][0], query_result["distances"][0]
)
]
logger.info(f"Found {len(results)} similar datasets for: {dataset_id}")
return QueryResponse(results=results)
except Exception as e:
logger.error(f"Error querying dataset {dataset_id}: {str(e)}")
raise HTTPException(status_code=500, detail=str(e)) from e
if __name__ == "__main__":
import uvicorn
uvicorn.run(app, host="0.0.0.0", port=8000)