davanstrien HF staff commited on
Commit
e8f13e9
1 Parent(s): 35c26f5
Files changed (1) hide show
  1. load_data.py +138 -0
load_data.py ADDED
@@ -0,0 +1,138 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import chromadb
2
+ import platform
3
+ import polars as pl
4
+ import polars as pl
5
+ from chromadb.utils import embedding_functions
6
+ from typing import List, Tuple, Optional
7
+ from huggingface_hub import InferenceClient
8
+ from tqdm.contrib.concurrent import thread_map
9
+ from huggingface_hub import login
10
+ from dotenv import load_dotenv
11
+ import os
12
+ from datetime import datetime, timedelta
13
+ import stamina
14
+ import requests
15
+ import polars as pl
16
+ from typing import Literal
17
+
18
+ load_dotenv()
19
+ HF_TOKEN = os.getenv("HF_TOKEN")
20
+
21
+
22
+ def get_save_path() -> Literal["chroma/"] | Literal["/data/chroma/"]:
23
+ return "chroma/" if platform.system() == "Darwin" else "/data/chroma/"
24
+
25
+
26
+ save_path = get_save_path()
27
+
28
+
29
+ chroma_client = chromadb.PersistentClient(
30
+ path=save_path,
31
+ )
32
+ sentence_transformer_ef = embedding_functions.SentenceTransformerEmbeddingFunction(
33
+ model_name="Snowflake/snowflake-arctic-embed-m-long", trust_remote_code=True
34
+ )
35
+ collection = chroma_client.create_collection(
36
+ name="dataset_cards", get_or_create=True, embedding_function=sentence_transformer_ef
37
+ )
38
+
39
+
40
+ def get_last_modified_in_collection() -> datetime | None:
41
+ all_items = collection.get(
42
+ include=[
43
+ "metadatas",
44
+ ]
45
+ )
46
+ if last_modified := [
47
+ datetime.fromisoformat(item["last_modified"]) for item in all_items["metadatas"]
48
+ ]:
49
+ return max(last_modified)
50
+ else:
51
+ return None
52
+
53
+
54
+ def parse_markdown_column(
55
+ df: pl.DataFrame, markdown_column: str, dataset_id_column: str
56
+ ) -> pl.DataFrame:
57
+ return df.with_columns(
58
+ parsed_markdown=(
59
+ pl.col(markdown_column)
60
+ .str.extract(r"(?s)^---.*?---\s*(.*)", group_index=1)
61
+ .fill_null(pl.col(markdown_column))
62
+ .str.strip_chars()
63
+ ),
64
+ prepended_markdown=(
65
+ pl.concat_str(
66
+ [
67
+ pl.lit("Dataset ID "),
68
+ pl.col(dataset_id_column).cast(pl.Utf8),
69
+ pl.lit("\n\n"),
70
+ pl.col(markdown_column)
71
+ .str.extract(r"(?s)^---.*?---\s*(.*)", group_index=1)
72
+ .fill_null(pl.col(markdown_column))
73
+ .str.strip_chars(),
74
+ ]
75
+ )
76
+ ),
77
+ )
78
+
79
+
80
+ def load_cards(
81
+ min_len: int = 50,
82
+ min_likes: int | None = None,
83
+ last_modified: Optional[datetime] = None,
84
+ ) -> (
85
+ None
86
+ | Tuple[
87
+ List[str],
88
+ List[str],
89
+ List[datetime],
90
+ ]
91
+ ):
92
+ df = pl.read_parquet(
93
+ "hf://datasets/librarian-bots/dataset_cards_with_metadata_with_embeddings/data/train-00000-of-00001.parquet"
94
+ )
95
+ df = parse_markdown_column(df, "card", "datasetId")
96
+ df = df.with_columns(pl.col("parsed_markdown").str.len_chars().alias("card_len"))
97
+ print(df)
98
+ df = df.filter(pl.col("card_len") > min_len)
99
+ print(df)
100
+ if min_likes:
101
+ df = df.filter(pl.col("likes") > min_likes)
102
+ if last_modified:
103
+ df = df.filter(pl.col("last_modified") > last_modified)
104
+ if len(df) == 0:
105
+ return None
106
+
107
+ cards = df.get_column("prepended_markdown").to_list()
108
+ model_ids = df.get_column("datasetId").to_list()
109
+ last_modifieds = df.get_column("last_modified").to_list()
110
+ return cards, model_ids, last_modifieds
111
+
112
+
113
+ client = InferenceClient(
114
+ model="https://pqzap00ebpl1ydt4.us-east-1.aws.endpoints.huggingface.cloud",
115
+ token=HF_TOKEN,
116
+ )
117
+
118
+
119
+ @stamina.retry(on=requests.HTTPError, attempts=3, wait_initial=10)
120
+ def embed_card(text):
121
+ text = text[:8192]
122
+ return client.feature_extraction(text)
123
+
124
+
125
+ most_recent = get_last_modified_in_collection()
126
+
127
+ if data := load_cards(min_len=200, min_likes=None, last_modified=most_recent):
128
+ cards, model_ids, last_modifieds = data
129
+ print("mapping...")
130
+ results = thread_map(embed_card, cards)
131
+ collection.upsert(
132
+ ids=model_ids,
133
+ embeddings=[embedding.tolist()[0] for embedding in results],
134
+ metadatas=[{"last_modified": str(lm)} for lm in last_modifieds],
135
+ )
136
+ print("done")
137
+ else:
138
+ print("no new data")