Spaces:
Running
on
Zero
Running
on
Zero
import glob | |
import json | |
import os | |
import uuid | |
from datetime import datetime | |
from pathlib import Path | |
import gradio as gr | |
import spaces | |
import torch | |
import transformers | |
from huggingface_hub import CommitScheduler, hf_hub_download, login | |
from transformers import AutoTokenizer | |
HF_TOKEN = os.getenv("HF_TOKEN") | |
login(HF_TOKEN) | |
# Load the model | |
model_id = "meta-llama/Meta-Llama-3-8B-Instruct" | |
tokenizer = AutoTokenizer.from_pretrained(model_id, add_special_tokens=True) | |
pipeline = transformers.pipeline( | |
"text-generation", | |
model=model_id, | |
model_kwargs={"torch_dtype": torch.bfloat16}, | |
device="cuda", | |
) | |
# Load the model configuration | |
with open("model_configs.json", "r") as f: | |
model_configs = json.load(f) | |
model_config = model_configs[model_id] | |
# Extract instruction | |
extract_input = model_config["extract_input"] | |
terminators = [ | |
tokenizer.eos_token_id, | |
tokenizer.convert_tokens_to_ids("<|eot_id|>"), | |
] | |
# Set up dataset storage | |
dataset_folder = Path("dataset") | |
dataset_folder.mkdir(exist_ok=True) | |
# Function to get the latest dataset file | |
def get_latest_dataset_file(): | |
if files := glob.glob(str(dataset_folder / "data_*.jsonl")): | |
return max(files, key=os.path.getctime) | |
return None | |
# Check for existing dataset and create or append to it | |
if latest_file := get_latest_dataset_file(): | |
dataset_file = Path(latest_file) | |
print(f"Appending to existing dataset file: {dataset_file}") | |
else: | |
dataset_file = dataset_folder / f"data_{uuid.uuid4()}.jsonl" | |
print(f"Creating new dataset file: {dataset_file}") | |
# Set up CommitScheduler for dataset uploads | |
repo_id = "davanstrien/magpie-preference" # Replace with your desired dataset repo | |
scheduler = CommitScheduler( | |
repo_id=repo_id, | |
repo_type="dataset", | |
folder_path=dataset_folder, | |
path_in_repo="data", | |
every=1, # Upload every minute | |
) | |
# Function to download existing dataset files | |
def download_existing_dataset(): | |
try: | |
files = hf_hub_download( | |
repo_id=repo_id, filename="data", repo_type="dataset", recursive=True | |
) | |
for file in glob.glob(os.path.join(files, "*.jsonl")): | |
dest_file = dataset_folder / os.path.basename(file) | |
if not dest_file.exists(): | |
dest_file.write_bytes(Path(file).read_bytes()) | |
print(f"Downloaded existing dataset file: {dest_file}") | |
except Exception as e: | |
print(f"Error downloading existing dataset: {e}") | |
# Download existing dataset files at startup | |
download_existing_dataset() | |
# Function to generate a session ID | |
def generate_session_id(): | |
return str(uuid.uuid4()) | |
# Function to save feedback and generated data | |
def save_data(generated_input, generated_response, vote, session_id): | |
data = { | |
"timestamp": datetime.now().isoformat(), | |
"prompt": generated_input, | |
"completion": generated_response, | |
"label": vote, | |
"session_id": session_id, | |
} | |
with scheduler.lock: | |
with dataset_file.open("a") as f: | |
f.write(json.dumps(data) + "\n") | |
return "Data saved and will be uploaded to the dataset repository." | |
def generate_instruction_response(): | |
prompt_info = f"""### Generating user prompt using the template: | |
``` | |
{extract_input} | |
``` | |
""" | |
yield ( | |
prompt_info, | |
"", | |
"", | |
gr.update(interactive=False), | |
gr.update(interactive=False), | |
"", | |
gr.update(interactive=False), | |
) | |
instruction = pipeline( | |
extract_input, | |
max_new_tokens=2048, | |
eos_token_id=terminators, | |
do_sample=True, | |
temperature=1, | |
top_p=1, | |
) | |
sanitized_instruction = instruction[0]["generated_text"][ | |
len(extract_input) : | |
].split("\n")[0] | |
first_step = ( | |
f"{prompt_info}### LLM generated instruction:\n\n{sanitized_instruction}" | |
) | |
yield ( | |
first_step + "\n\n### Generating LLM response...", | |
sanitized_instruction, | |
"", | |
gr.update(interactive=False), | |
gr.update(interactive=False), | |
"", | |
gr.update(interactive=False), | |
) | |
response_template = f"""<|begin_of_text|><|start_header_id|>user<|end_header_id|>\n\n{sanitized_instruction}<|eot_id|><|start_header_id|>assistant<|end_header_id|>\n\n""" | |
response = pipeline( | |
response_template, | |
max_new_tokens=2048, | |
eos_token_id=terminators, | |
do_sample=True, | |
temperature=1, | |
top_p=1, | |
) | |
assistant_response = response[0]["generated_text"][len(response_template) :] | |
final_output = f"""### Template used for generating instruction: | |
``` | |
{extract_input} | |
``` | |
### LLM Generated Instruction: | |
{sanitized_instruction} | |
### LLM Generated Response: | |
{assistant_response} | |
""" | |
yield ( | |
final_output, | |
sanitized_instruction, | |
assistant_response, | |
gr.update(interactive=True), | |
gr.update(interactive=True), | |
"", | |
gr.update(interactive=True), | |
) | |
title = """ | |
# π¦ββ¬ Magpie Preference | |
""" | |
description = """ | |
This demo showcases **Magpie**, an innovative approach to generating high-quality data by prompting aligned LLMs with their pre-query templates. | |
Unlike traditional methods, Magpie doesn't rely on prompt engineering or seed questions for generating synthetic data. Instead, it uses the prompt template of an aligned LLM to generate both a user query and an LLM response. | |
As well as providing a demo for the Magpie generations, this Space also allows you to submit a preference rating for the generated data, contributing to a crowdsourced dataset. | |
## π How it works | |
1. **π Instruction Generation:** The model generates a user instruction. | |
2. **π¬ Response Generation:** The model generates a response to this instruction. | |
3. **ππ User Feedback (optional):** Rate the quality of the generated content. | |
4. **πΎ Dataset Creation:** Feedback and generated data are saved to a Hugging Face dataset. | |
π Find the crowd-generated dataset [here](https://huggingface.co/datasets/davanstrien/magpie-preference). It's updated every minute! | |
π Learn more about Magpie in the [paper](https://huggingface.co/papers/2406.08464). | |
> **Note:** A random session ID groups your feedback. No personal information is collected. | |
""" | |
# Create the Gradio interface | |
with gr.Blocks() as iface: | |
gr.Markdown(title) | |
gr.Markdown(description) | |
# Add a state variable to store the session ID | |
session_id = gr.State(generate_session_id) | |
generated_input = gr.State("") | |
generated_response = gr.State("") | |
generate_btn = gr.Button("π Generate Instructions Response Pair") | |
output = gr.Markdown(label="Generated Data") | |
with gr.Row(): | |
thumbs_up = gr.Button("π Thumbs Up", interactive=False) | |
thumbs_down = gr.Button("π Thumbs Down", interactive=False) | |
feedback_output = gr.Markdown(label="Feedback Status") | |
def vote_and_submit(vote, input_text, response_text, session_id): | |
if input_text and response_text: | |
feedback = save_data( | |
input_text, response_text, vote == "π Thumbs Up", session_id | |
) | |
return ( | |
feedback, | |
gr.update(interactive=False), | |
gr.update(interactive=False), | |
gr.update(interactive=True), | |
) | |
else: | |
return ( | |
"Please generate data before submitting feedback.", | |
gr.update(interactive=True), | |
gr.update(interactive=True), | |
gr.update(interactive=True), | |
) | |
generate_btn.click( | |
generate_instruction_response, | |
inputs=[], | |
outputs=[ | |
output, | |
generated_input, | |
generated_response, | |
thumbs_up, | |
thumbs_down, | |
feedback_output, | |
generate_btn, | |
], | |
) | |
thumbs_up.click( | |
vote_and_submit, | |
inputs=[ | |
gr.State("π Thumbs Up"), | |
generated_input, | |
generated_response, | |
session_id, | |
], | |
outputs=[feedback_output, thumbs_up, thumbs_down, generate_btn], | |
) | |
thumbs_down.click( | |
vote_and_submit, | |
inputs=[ | |
gr.State("π Thumbs Down"), | |
generated_input, | |
generated_response, | |
session_id, | |
], | |
outputs=[feedback_output, thumbs_up, thumbs_down, generate_btn], | |
) | |
# Launch the app | |
iface.launch(debug=True) | |