Commit
•
ce11ffc
1
Parent(s):
4c07fb9
first commit
Browse files- .vscode/launch.json +17 -0
- app.py +54 -0
- requirements.txt +19 -0
.vscode/launch.json
ADDED
@@ -0,0 +1,17 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
// Use IntelliSense to learn about possible attributes.
|
3 |
+
// Hover to view descriptions of existing attributes.
|
4 |
+
// For more information, visit: https://go.microsoft.com/fwlink/?linkid=830387
|
5 |
+
"version": "0.2.0",
|
6 |
+
"configurations": [
|
7 |
+
{
|
8 |
+
"name": "Python Debugger: Current File",
|
9 |
+
"type": "debugpy",
|
10 |
+
"request": "launch",
|
11 |
+
"program": "${file}",
|
12 |
+
"console": "integratedTerminal",
|
13 |
+
"envFile": "${workspaceFolder}/.env",
|
14 |
+
"python": "${workspaceFolder}/../data-viber/.venv/bin/python"
|
15 |
+
}
|
16 |
+
]
|
17 |
+
}
|
app.py
ADDED
@@ -0,0 +1,54 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import io
|
3 |
+
import random
|
4 |
+
|
5 |
+
import requests
|
6 |
+
from PIL import Image
|
7 |
+
from data_viber import AnnotatorInterFace
|
8 |
+
|
9 |
+
HF_TOKEN = os.environ["HF_TOKEN"]
|
10 |
+
HEADERS = {"Authorization": f"Bearer {HF_TOKEN}"}
|
11 |
+
DATASET_SERVER_URL = "https://datasets-server.huggingface.co"
|
12 |
+
DATASET_NAME = "poloclub%2Fdiffusiondb&config=2m_random_1k&split=train"
|
13 |
+
MODEL_URL = (
|
14 |
+
"https://api-inference.huggingface.co/models/black-forest-labs/FLUX.1-schnell"
|
15 |
+
)
|
16 |
+
|
17 |
+
|
18 |
+
def retrieve_sample(idx):
|
19 |
+
api_url = f"{DATASET_SERVER_URL}/rows?dataset={DATASET_NAME}&offset={idx}&length=1"
|
20 |
+
response = requests.get(api_url, headers=HEADERS)
|
21 |
+
data = response.json()
|
22 |
+
img_url = data["rows"][0]["row"]["image"]["src"]
|
23 |
+
prompt = data["rows"][0]["row"]["prompt"]
|
24 |
+
return img_url, prompt
|
25 |
+
|
26 |
+
|
27 |
+
def get_rows():
|
28 |
+
api_url = f"{DATASET_SERVER_URL}/size?dataset={DATASET_NAME}"
|
29 |
+
response = requests.get(api_url, headers=HEADERS)
|
30 |
+
num_rows = response.json()["size"]["config"]["num_rows"]
|
31 |
+
return num_rows
|
32 |
+
|
33 |
+
|
34 |
+
def generate_response(prompt):
|
35 |
+
payload = {
|
36 |
+
"inputs": prompt,
|
37 |
+
}
|
38 |
+
response = requests.post(MODEL_URL, headers=HEADERS, json=payload)
|
39 |
+
image = Image.open(io.BytesIO(response.content))
|
40 |
+
return image
|
41 |
+
|
42 |
+
|
43 |
+
def next_input(_prompt, _completion_a, _completion_b):
|
44 |
+
random_idx = random.randint(0, get_rows()) - 1
|
45 |
+
img_url, prompt = retrieve_sample(random_idx)
|
46 |
+
generated_image = generate_response(prompt)
|
47 |
+
return (prompt, img_url, generated_image)
|
48 |
+
|
49 |
+
if __name__ == "__main__":
|
50 |
+
interface = AnnotatorInterFace.for_image_generation_preference(
|
51 |
+
fn=next_input,
|
52 |
+
dataset_name=None,
|
53 |
+
)
|
54 |
+
interface.launch()
|
requirements.txt
ADDED
@@ -0,0 +1,19 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
gradio[oauth]>=4.3,<5
|
2 |
+
datasets>=2,<3
|
3 |
+
sentence-transformers>=3
|
4 |
+
optimum[onnxruntime]>=1.21.3
|
5 |
+
tabulate>=0.9.0
|
6 |
+
diffusers>=0.30.0
|
7 |
+
transformers>=4.43.4
|
8 |
+
ipykernel>=6.29.5
|
9 |
+
umap-learn>=0.5,<1
|
10 |
+
plotly>=5,<6
|
11 |
+
dash>=2.11,<3
|
12 |
+
dash-bootstrap-components>=1.6.0
|
13 |
+
pre-commit>=3.8.0
|
14 |
+
ruff>=0.5,<1
|
15 |
+
pytest>=8,<9
|
16 |
+
black>=24,<25
|
17 |
+
openpyxl>=3,<4
|
18 |
+
requests
|
19 |
+
pillow
|