Spaces:
Runtime error
Runtime error
import gradio as gr | |
import numpy as np | |
import torch | |
from transformers import BarkModel | |
from transformers import AutoProcessor | |
from transformers import pipeline | |
import librosa | |
processor = AutoProcessor.from_pretrained("suno/bark-small") | |
model = BarkModel.from_pretrained("suno/bark-small") | |
device = "cuda:0" if torch.cuda.is_available() else "cpu" | |
model = model.to(device) | |
# https://suno-ai.notion.site/8b8e8749ed514b0cbf3f699013548683?v=bc67cff786b04b50b3ceb756fd05f68c | |
language_presets = {"es":"v2/es_speaker_", | |
"en":"v2/en_speaker_"} | |
def tts(text, language="es", style:int = 0): | |
voice_preset = language_presets[language] + str(style) | |
# prepare the inputs | |
inputs = processor(text, voice_preset = voice_preset) | |
# generate speech | |
speech_output = model.generate(**inputs.to(device)) | |
sampling_rate = model.generation_config.sample_rate | |
return speech_output[0].cpu().numpy(), sampling_rate | |
# load speech translation checkpoint | |
asr_pipe = pipeline("automatic-speech-recognition", model="openai/whisper-base", device=device) | |
def translate(audio, language:str = "es"): | |
outputs = asr_pipe(audio, max_new_tokens=256, generate_kwargs={"task": "transcribe", "language":language}) | |
text = outputs["text"] | |
return text | |
def synthesise(text, language="es",style=0): | |
speech, sr = tts(text, language=language, style=style) | |
target_sr = 16_000 | |
speech = librosa.resample(speech, orig_sr = sr, target_sr = target_sr) | |
return speech, target_sr | |
def speech_to_speech_translation(audio, debug = True): | |
translated_text = translate(audio) | |
if debug: | |
print(f"{translated_text=}") | |
synthesised_speech, sampling_rate = synthesise(translated_text) | |
# tranform to int for Gradio | |
synthesised_speech = (np.array(synthesised_speech) * 32767).astype(np.int16) | |
return sampling_rate, synthesised_speech | |
title = "Cascaded STST" | |
description = """ | |
Demo for cascaded speech-to-speech translation (STST), mapping from source speech in any language to target speech in English. Demo uses OpenAI's [Whisper Base](https://huggingface.co/openai/whisper-base) model for speech translation, and Microsoft's | |
[SpeechT5 TTS](https://huggingface.co/microsoft/speecht5_tts) model for text-to-speech: | |
 | |
""" | |
demo = gr.Blocks() | |
mic_translate = gr.Interface( | |
fn=speech_to_speech_translation, | |
inputs=gr.Audio(source="microphone", type="filepath"), | |
outputs=gr.Audio(label="Generated Speech", type="numpy"), | |
title=title, | |
description=description, | |
) | |
file_translate = gr.Interface( | |
fn=speech_to_speech_translation, | |
inputs=gr.Audio(source="upload", type="filepath"), | |
outputs=gr.Audio(label="Generated Speech", type="numpy"), | |
examples=[["./example.wav"]], | |
title=title, | |
description=description, | |
) | |
with demo: | |
gr.TabbedInterface([mic_translate, file_translate], ["Microphone", "Audio File"]) | |
demo.launch() | |