import gradio as gr import numpy as np import torch from transformers import BarkModel from transformers import AutoProcessor from transformers import pipeline import librosa processor = AutoProcessor.from_pretrained("suno/bark-small") model = BarkModel.from_pretrained("suno/bark-small") device = "cuda:0" if torch.cuda.is_available() else "cpu" model = model.to(device) # https://suno-ai.notion.site/8b8e8749ed514b0cbf3f699013548683?v=bc67cff786b04b50b3ceb756fd05f68c language_presets = {"es":"v2/es_speaker_", "en":"v2/en_speaker_"} def tts(text, language="es", style:int = 0): voice_preset = language_presets[language] + str(style) # prepare the inputs inputs = processor(text, voice_preset = voice_preset) # generate speech speech_output = model.generate(**inputs.to(device)) sampling_rate = model.generation_config.sample_rate return speech_output[0].cpu().numpy(), sampling_rate # load speech translation checkpoint asr_pipe = pipeline("automatic-speech-recognition", model="openai/whisper-base", device=device) def translate(audio, language:str = "es"): outputs = asr_pipe(audio, max_new_tokens=256, generate_kwargs={"task": "transcribe", "language":language}) text = outputs["text"] return text def synthesise(text, language="es",style=0): speech, sr = tts(text, language=language, style=style) target_sr = 16_000 speech = librosa.resample(speech, orig_sr = sr, target_sr = target_sr) return speech, target_sr def speech_to_speech_translation(audio, debug = True): translated_text = translate(audio) if debug: print(f"{translated_text=}") synthesised_speech, sampling_rate = synthesise(translated_text) # tranform to int for Gradio synthesised_speech = (np.array(synthesised_speech) * 32767).astype(np.int16) return sampling_rate, synthesised_speech title = "Cascaded STST" description = """ Demo for cascaded speech-to-speech translation (STST), mapping from source speech in any language to target speech in English. Demo uses OpenAI's [Whisper Base](https://huggingface.co/openai/whisper-base) model for speech translation, and Microsoft's [SpeechT5 TTS](https://huggingface.co/microsoft/speecht5_tts) model for text-to-speech: ![Cascaded STST](https://huggingface.co/datasets/huggingface-course/audio-course-images/resolve/main/s2st_cascaded.png "Diagram of cascaded speech to speech translation") """ demo = gr.Blocks() mic_translate = gr.Interface( fn=speech_to_speech_translation, inputs=gr.Audio(source="microphone", type="filepath"), outputs=gr.Audio(label="Generated Speech", type="numpy"), title=title, description=description, ) file_translate = gr.Interface( fn=speech_to_speech_translation, inputs=gr.Audio(source="upload", type="filepath"), outputs=gr.Audio(label="Generated Speech", type="numpy"), examples=[["./example.wav"]], title=title, description=description, ) with demo: gr.TabbedInterface([mic_translate, file_translate], ["Microphone", "Audio File"]) demo.launch()