import streamlit as st from transformers import AutoModelForCausalLM, AutoTokenizer import torch import base64 st.set_page_config(page_title="Gemma Demo", layout="wide") # Model selection (STUBBED behavior) model_option = st.selectbox( "Choose a Gemma to reveal hidden truths:", ["gemma-2b-it (Instruct)", "gemma-2b", "gemma-7b", "gemma-7b-it"], index=0, help="Stubbed selection – only gemma-2b-it will load for now." ) st.markdown("

Portal to Gemma

", unsafe_allow_html=True) # Load both GIFs in base64 format def load_gif_base64(path): with open(path, "rb") as f: return base64.b64encode(f.read()).decode("utf-8") # still_gem_b64 = load_gif_base64("assets/stillGem.gif") # rotating_gem_b64 = load_gif_base64("assets/rotatingGem.gif") # Placeholder for GIF HTML gif_html = st.empty() caption = st.empty() # Initially show still gem # gif_html.markdown( # f"
", # unsafe_allow_html=True, # ) gif_html.markdown( f"
", unsafe_allow_html=True, ) @st.cache_resource def load_model(): # As Gemma is gated, we will show functionality of the demo using DeepSeek-R1-Distill-Qwen-1.5B model # model_id = "google/gemma-2b-it" # tokenizer = AutoTokenizer.from_pretrained(model_id, token=True) model_id = "deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B" tokenizer = AutoTokenizer.from_pretrained(model_id) model = AutoModelForCausalLM.from_pretrained( model_id, device_map=None, torch_dtype=torch.float32 ) model.to("cpu") return tokenizer, model tokenizer, model = load_model() prompt = st.text_area("Enter your prompt:", "What is Gemma?") # # Example prompt selector # examples = { # "🧠 Summary": "Summarize the history of AI in 5 bullet points.", # "💻 Code": "Write a Python function to sort a list using bubble sort.", # "📜 Poem": "Write a haiku about large language models.", # "🤖 Explain": "Explain what a transformer is in simple terms.", # "🔍 Fact": "Who won the FIFA World Cup in 2022?" # } # selected_example = st.selectbox("Choose a Gemma to consult:", list(examples.keys()) + ["✍️ Custom input"]) # Add before generation col1, col2, col3 = st.columns(3) with col1: temperature = st.slider("Temperature", 0.1, 1.5, 1.0) with col2: max_tokens = st.slider("Max tokens", 50, 500, 100) with col3: top_p = st.slider("Top-p (nucleus sampling)", 0.1, 1.0, 0.95) # if selected_example != "✍️ Custom input": # prompt = examples[selected_example] # else: # prompt = st.text_area("Enter your prompt:") if st.button("Generate"): # Swap to rotating GIF # gif_html.markdown( # f"
", # unsafe_allow_html=True, # ) gif_html.markdown( f"
", unsafe_allow_html=True, ) caption.markdown("

Gemma is thinking... 🌀

", unsafe_allow_html=True) # Generate text inputs = tokenizer(prompt, return_tensors="pt").to(model.device) with torch.no_grad(): outputs = model.generate(**inputs, max_new_tokens=max_tokens, temperature=temperature, top_p=top_p) # Back to still # gif_html.markdown( # f"
", # unsafe_allow_html=True, # ) gif_html.markdown( f"
", unsafe_allow_html=True, ) caption.empty() result = tokenizer.decode(outputs[0], skip_special_tokens=True) st.markdown("### ✨ Output:") st.write(result)