File size: 4,265 Bytes
577164e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
import os
import pandas as pd

from collections import defaultdict
from evaluate import is_duplicated, is_length_exceed, get_average
from utils.decorate import cloud_model, decorate_model_name
from utils.file_handler import load_json


# results_bleu/์—์„œ ์ง‘๊ณ„
def aggregate_bleu(json_data, bleu_table, src_table, length_table):
    duplicate_count = defaultdict(int)
    length_exceeds_count = defaultdict(int)

    for data in json_data:
        src_table[data["model"]]["Average"].append(data["bleu"])
        src_table[data["model"]][data["src"]].append(data["bleu"])
        if is_duplicated(data["generation"]):
            duplicate_count[data["model"]] += 1
        if is_length_exceed(data["reference"], data["generation"]):
            length_exceeds_count[data["model"]] += 1
    for model, row in src_table.items():
        src_table[model] = dict((attr, get_average(val)) for attr, val in row.items())

    # bleu, duplicate, length exceeds ์ถ”๊ฐ€
    for model in src_table:
        bleu_table[model]["Average"].append(src_table[model]["Average"])
        bleu_table[model]["Bleu"] = src_table[model]["Average"]
        bleu_table[model]["Duplicate"] = duplicate_count[model]
        bleu_table[model]["Length Exceeds"] = length_exceeds_count[model]


# results_self/์—์„œ ์ง‘๊ณ„
def aggregate_self(json_data, bleu_table, src_table, length_table):
    sbleu_score = defaultdict(list)
    for data in json_data:
        sbleu_score[data["model"]].append(data["bleu"])

    # sbleu ์ถ”๊ฐ€
    for model in sbleu_score:
        bleu_table[model]["SBleu"] = get_average(sbleu_score[model])
        bleu_table[model]["Average"].append(bleu_table[model]["SBleu"])


# results_length/์—์„œ ์ง‘๊ณ„
def aggregate_length(json_data, bleu_table, src_table, length_table):
    for data in json_data:
        length_table[data["model"]]["Average"].append(data["bleu"])
        length_table[data["model"]][f"~{data['length']}"].append(data["bleu"])
    for model, row in length_table.items():
        length_table[model] = dict(
            (attr, get_average(val)) for attr, val in row.items()
        )

    # bleu-sl ์ถ”๊ฐ€
    for model in length_table:
        bleu_table[model]["Bleu-SL"] = length_table[model]["Average"]
        bleu_table[model]["Average"].append(bleu_table[model]["Bleu-SL"])
        bleu_table[model]["Average"] = get_average(bleu_table[model]["Average"])


def create():
    results_dirs = {
        "results_bleu/": aggregate_bleu,
        "results_self/": aggregate_self,
        "results_length/": aggregate_length,
    }

    bleu_table = defaultdict(lambda: defaultdict(list))
    src_table = defaultdict(lambda: defaultdict(list))
    length_table = defaultdict(lambda: defaultdict(list))
    tables = {
        "bleu_and_sbleu": bleu_table,
        "bleu_by_src": src_table,
        "bleu_by_length": length_table,
    }

    # bleu score ์ง‘๊ณ„
    for dir, aggregate in results_dirs.items():
        json_data = []
        for filename in os.listdir(dir):
            if not filename.endswith(".jsonl"):
                continue
            file_path = os.path.join(dir, filename)
            json_data += load_json(file_path)
        aggregate(json_data, *tables.values())

    # table dataframe ์ƒ์„ฑ
    for table in tables:
        df = pd.DataFrame.from_dict(tables[table], orient="index")
        if table == "bleu_and_sbleu":
            df["Duplicate"] = df.pop("Duplicate")
            df["Length Exceeds"] = df.pop("Length Exceeds")
        df.reset_index(inplace=True, names="Model")
        df["Model"] = list(map(decorate_model_name, df["Model"]))
        df.insert(
            0,
            "Type",
            list(
                map(
                    lambda x: "Cloud" if x in cloud_model else "HuggingFace",
                    df["Model"],
                )
            ),
        )
        df.insert(
            0, "Rank", df["Average"].rank(method="min", ascending=False).astype(int)
        )
        df = df.sort_values(by="Rank")
        tables[table] = df

    return tables.values()


def main():
    tables = list(create())
    print("# dataframe")
    print(tables[0], "\n\n")
    print("# markdown")
    print(tables[0].to_markdown(index=False))


if __name__ == "__main__":
    main()