Spaces:
Running
on
Zero
Running
on
Zero
davidserra9
commited on
First commit from github repo
Browse files- .gitattributes +1 -0
- README.md +124 -14
- app.py +470 -0
- assets/a4957-expertc.png +0 -0
- assets/a4957-input.png +0 -0
- assets/a4982-input.png +0 -0
- assets/a4984-input.png +0 -0
- assets/a4985-input.png +0 -0
- assets/a4986-input.png +0 -0
- assets/a4988-input.png +0 -0
- assets/a4990-input.png +0 -0
- assets/a4993-input.png +0 -0
- assets/a4994-input.png +0 -0
- assets/a4996-input.png +0 -0
- assets/a4998-input.png +0 -0
- assets/a5000-input.png +0 -0
- assets/architecture-overview.png +0 -0
- assets/thumbnail.png +0 -0
- configs/mit5k_dpe_config.yaml +96 -0
- configs/mit5k_upe_config.yaml +90 -0
- data/datasets.py +109 -0
- data/image_transformations.py +61 -0
- mit5k_ids_filepath/dpe/images_test.txt +50 -0
- mit5k_ids_filepath/dpe/images_train.txt +62 -0
- mit5k_ids_filepath/dpe/images_valid.txt +2250 -0
- mit5k_ids_filepath/upe_uegan/images_test.txt +500 -0
- mit5k_ids_filepath/upe_uegan/images_train.txt +4500 -0
- models/attention_fusion.py +108 -0
- models/backbone.py +234 -0
- models/bezier_control_point_estimator.py +90 -0
- models/color_naming.py +70 -0
- models/interactive_model.py +125 -0
- models/joost_color_naming.mat +3 -0
- models/model.py +28 -0
- output/a4957-input.png +0 -0
- requirements.txt +33 -0
- scripts/download_checkpoints.sh +9 -0
- scripts/generate_naming_maps.py +29 -0
- test.py +41 -0
- train.py +73 -0
- utils/deltaE.py +125 -0
- utils/evaluator.py +69 -0
- utils/logger.py +21 -0
- utils/setup_criterion.py +26 -0
- utils/setup_optim_scheduler.py +10 -0
- utils/trainer.py +47 -0
.gitattributes
CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
models/joost_color_naming.mat filter=lfs diff=lfs merge=lfs -text
|
README.md
CHANGED
@@ -1,14 +1,124 @@
|
|
1 |
-
|
2 |
-
|
3 |
-
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
![thumbnail](/assets/thumbnail.png)
|
2 |
+
|
3 |
+
This repository is the official implementation of "NamedCurves: Learned Image Enhancement via Color Naming" @ ECCV24.
|
4 |
+
|
5 |
+
[![arXiv](https://img.shields.io/badge/ArXiv-Paper-B31B1B)](https://arxiv.org/abs/2407.09892)
|
6 |
+
[![web](https://img.shields.io/badge/Project-Page-orange)](https://namedcurves.github.io/)
|
7 |
+
|
8 |
+
[David Serrano-Lozano](https://davidserra9.github.io/), [Luis Herranz](http://www.lherranz.org/), [Michael S. Brown](http://www.cse.yorku.ca/~mbrown/) and [Javier Vazquez-Corral](https://www.jvazquez-corral.net/)
|
9 |
+
|
10 |
+
## News 🚀
|
11 |
+
- [Nov24] Code update. We release the inference images for MIT5K-UEGAN.
|
12 |
+
- [July24] We realease the code and pretrained models of our paper.
|
13 |
+
- [July24] Our paper NamedCurves is accepted to ECCV24!
|
14 |
+
|
15 |
+
## TODO:
|
16 |
+
- torch Dataset object for PPR10K
|
17 |
+
- Create notebook
|
18 |
+
- Create gradio demo
|
19 |
+
|
20 |
+
## Method
|
21 |
+
|
22 |
+
We propose NamedCurves, a learning-based image enhancement technique that decomposes the image into a small set of named colors. Our method learns to globally adjust the image for each specific named color via tone curves and then combines the images using and attention-based fusion mechanism to mimic spatial editing. In contrast to other SOTA methods, NamedCurves allows interpretability thanks to computing a set of tone curves for each universal color name.
|
23 |
+
|
24 |
+
![architecture](/assets/architecture-overview.png)
|
25 |
+
|
26 |
+
## Data
|
27 |
+
|
28 |
+
In this paper we use two datasets: [MIT-Adobe FiveK](https://data.csail.mit.edu/graphics/fivek/) and [PPR10K](https://github.com/csjliang/PPR10K).
|
29 |
+
|
30 |
+
### MIT-Adobe FiveK
|
31 |
+
|
32 |
+
MIT FiveK dataset consists of 5,000 photographs taken by SLR cameras by a set of different photographers that cover a broad range of scenes, subjects, and lighting conditions. They are all in RAW format. Then, 5 different photography students adjust the tone of the photos. Each of them retouched all the 5,000 photos using Adobe Lightroom.
|
33 |
+
|
34 |
+
Following previous works we decided to use just the expert-C redition. To obtain the retouched images, we have to render the RAW files using Adobe Lightroom. Because of this, researchers have created different rendered versions of the dataset. In this paper, we use 3 different versions: DPE, UPE and UEGAN, dubbed after the method that introduced them. Some methods were evaluated in only some of the versions and their code and models are not available, so we considered it was fair to compare our results in the same conditions as they did. Now, we will provide information on the properties of each version and how to obtain them:
|
35 |
+
|
36 |
+
The dataset can be downloaded [here](ttps://data.csail.mit.edu/graphics/fivek/). After downloading the images you will need to use Adobe Lightroom to pre-process them according to each version.
|
37 |
+
|
38 |
+
- The **DPE** version uses the first 2,250 images of the dataset for training, the following 2,250 for validation and the last 500 for testing. The images are rendered to have the short edge to 512 pixels. Please see the [issue](https://github.com/sjmoran/CURL/issues/20) for detailed instructions.
|
39 |
+
|
40 |
+
- The **UPE** version uses the first 4,500 images of the dataset for training and the last 500 for testing. The images are rendered to have the short edge to 512 pixels. Please see the [issue](https://github.com/dvlab-research/DeepUPE/issues/26) for detailed instructions.
|
41 |
+
|
42 |
+
- The **UEGAN** version uses the first 4,500 images of the dataset for training and the last 500 for testing. The images are rendered to have the short edge to 512 pixels. For downloading the rendered images from [Google Drive](https://drive.google.com/drive/folders/1x-DcqFVoxprzM4KYGl8SUif8sV-57FP3). Please see the [official repository](https://github.com/dvlab-research/DeepUPE) for more information.
|
43 |
+
|
44 |
+
### PPR10K
|
45 |
+
PPR10K contains 1,681 high-quality RAW portraits photos manually retouched by 3 experts. The dataset can be downloaded from the [official repository](https://github.com/csjliang/PPR10K). We used the 480p images.
|
46 |
+
|
47 |
+
## Getting started
|
48 |
+
|
49 |
+
### Environment setup
|
50 |
+
|
51 |
+
We provide a Conda environment file ```requirements.txt``` with all necessary dependencies, except for PyTorch and Torchvision. Follow the instructions below to set up the environment.
|
52 |
+
|
53 |
+
First, create and activate the Conda environment:
|
54 |
+
|
55 |
+
```
|
56 |
+
conda create -n namedcurves python=3.8
|
57 |
+
conda activate namedcurves
|
58 |
+
```
|
59 |
+
|
60 |
+
Alternatively, you can set up a virtual environment:
|
61 |
+
```
|
62 |
+
python3 -m venv venv
|
63 |
+
source venv/bin/activate
|
64 |
+
```
|
65 |
+
|
66 |
+
Next, install PyTorch and Torchvision with the appropriate versions based on your CUDA and driver dependencies. Visit the [Pytorch Official Page](https://pytorch.org/get-started/previous-versions/) for specific installation commands. For example:
|
67 |
+
|
68 |
+
```
|
69 |
+
pip install torch==1.12.0+cu113 torchvision==0.13.0+cu113 --extra-index-url https://download.pytorch.org/whl/cu113
|
70 |
+
```
|
71 |
+
|
72 |
+
Once PyTorch is installed, you can install the remaining dependencies from the ```requirements.txt``` file:
|
73 |
+
|
74 |
+
```
|
75 |
+
pip install -r requirements.txt
|
76 |
+
```
|
77 |
+
|
78 |
+
Alternatively, you can manually install the required packages:
|
79 |
+
```
|
80 |
+
pip install omegaconf matplotlib scipy scikit-image lpips torchmetrics
|
81 |
+
```
|
82 |
+
|
83 |
+
### Results
|
84 |
+
|
85 |
+
We provide our results for the MIT5K dataset in the following format: aXXXX_Y_Z.png, where XXXX is the 4-digit file ID, Y is the PSNR value, and Z is the $\Delta E2000$ color difference of the image. All numeric values are rounded to two decimal places.
|
86 |
+
|
87 |
+
| | PSNR | SSIM | $\Delta E2000$ | Images |
|
88 |
+
| :-------- | :------: | :-------: | :--------------: | :-------: |
|
89 |
+
| MIT5K | 25.59 | 0.936 | 6.07 | [Link](https://cvcuab-my.sharepoint.com/:f:/g/personal/dserrano_cvc_uab_cat/EijObxqdogJHpNufwKKZE4ABI78-4iQnO78V2mHkzfs07A?e=tVTWAq)
|
90 |
+
|
91 |
+
### Pre-trained models
|
92 |
+
|
93 |
+
Create and store the pre-trained models in a folder inside the repository.
|
94 |
+
|
95 |
+
```
|
96 |
+
cd namedcurves
|
97 |
+
mkdir pretrained
|
98 |
+
```
|
99 |
+
|
100 |
+
The weights can be found [here](https://github.com/davidserra9/namedcurves/releases/tag/v1.0). Alternatively, you can run:
|
101 |
+
|
102 |
+
```
|
103 |
+
cd namedcurves
|
104 |
+
bash scripts/download_checkpoints.sh
|
105 |
+
```
|
106 |
+
|
107 |
+
|
108 |
+
## Inference
|
109 |
+
|
110 |
+
The following command takes an image file or a folder with images and saves the results in the specified directory.
|
111 |
+
|
112 |
+
```
|
113 |
+
python test.py --input_path assets/a4957-input.png --output_path output/ --config_path configs/mit5k_upe_config.yaml --model_path pretrained/mit5k_uegan_psnr_25.59.pth
|
114 |
+
```
|
115 |
+
|
116 |
+
## Training
|
117 |
+
|
118 |
+
Modify the configurations of the ```configs``` folders and run the following command:
|
119 |
+
|
120 |
+
```
|
121 |
+
python train.py --config configs/mit5k_upe_config.yaml
|
122 |
+
```
|
123 |
+
|
124 |
+
|
app.py
ADDED
@@ -0,0 +1,470 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import argparse
|
2 |
+
from omegaconf import OmegaConf
|
3 |
+
import gradio as gr
|
4 |
+
from PIL import Image
|
5 |
+
import os
|
6 |
+
import torch
|
7 |
+
import numpy as np
|
8 |
+
import io
|
9 |
+
import yaml
|
10 |
+
from huggingface_hub import hf_hub_download
|
11 |
+
import matplotlib.pyplot as plt
|
12 |
+
#from gradio_imageslider import ImageSlider
|
13 |
+
|
14 |
+
## local code
|
15 |
+
from models.interactive_model import NamedCurves
|
16 |
+
|
17 |
+
def dict2namespace(config):
|
18 |
+
namespace = argparse.Namespace()
|
19 |
+
for key, value in config.items():
|
20 |
+
if isinstance(value, dict):
|
21 |
+
new_value = dict2namespace(value)
|
22 |
+
else:
|
23 |
+
new_value = value
|
24 |
+
setattr(namespace, key, new_value)
|
25 |
+
return namespace
|
26 |
+
|
27 |
+
def get_named_curves(control_points):
|
28 |
+
linspace = torch.linspace(0, 1, steps=101).unsqueeze(0).unsqueeze(2).repeat(1, 3, 1, 1).to(device)
|
29 |
+
outspace = model.bcpe.apply_cubic_bezier(linspace, control_points)
|
30 |
+
|
31 |
+
fig = plt.figure()
|
32 |
+
plt.plot(linspace[0, 0, :, 0].cpu().numpy(),outspace[0, 0, :, 0].cpu().numpy(), 'r')
|
33 |
+
plt.plot(linspace[0, 1, :, 0].cpu().numpy(), outspace[0, 1, :, 0].cpu().numpy(), 'g')
|
34 |
+
plt.plot(linspace[0, 2, :, 0].cpu().numpy(), outspace[0, 2, :, 0].cpu().numpy(), 'b')
|
35 |
+
|
36 |
+
plt.scatter(control_points[0, 0, :, 1].cpu().numpy(), control_points[0, 0, :, 0].cpu().numpy(), c='r', marker='x')
|
37 |
+
plt.scatter(control_points[0, 1, :, 1].cpu().numpy(), control_points[0, 1, :, 0].cpu().numpy(), c='g', marker='x')
|
38 |
+
plt.scatter(control_points[0, 2, :, 1].cpu().numpy(), control_points[0, 2, :, 0].cpu().numpy(), c='b', marker='x')
|
39 |
+
|
40 |
+
plt.xlim(0, 1)
|
41 |
+
plt.ylim(0, 1)
|
42 |
+
plt.grid()
|
43 |
+
|
44 |
+
img_buf = io.BytesIO()
|
45 |
+
plt.savefig(img_buf, format='png', bbox_inches='tight', dpi=300)
|
46 |
+
plt.close(fig)
|
47 |
+
return Image.open(img_buf)
|
48 |
+
|
49 |
+
hf_hub_download(repo_id="davidserra9/NamedCurves", filename="mit5k_uegan_psnr_25.59.pth", local_dir="./")
|
50 |
+
|
51 |
+
CONFIG = "configs/mit5k_upe_config.yaml"
|
52 |
+
model_pt = "mit5k_uegan_psnr_25.59.pth"
|
53 |
+
|
54 |
+
# parse config file
|
55 |
+
config = OmegaConf.load(CONFIG)
|
56 |
+
|
57 |
+
config = dict2namespace(config)
|
58 |
+
|
59 |
+
device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
|
60 |
+
model = NamedCurves(config.model).to(device)
|
61 |
+
model.load_state_dict(torch.load(model_pt)["model_state_dict"])
|
62 |
+
|
63 |
+
def load_img(filename, norm=True,):
|
64 |
+
img = np.array(Image.open(filename).convert("RGB"))
|
65 |
+
if norm:
|
66 |
+
img = img / 255.
|
67 |
+
img = img.astype(np.float32)
|
68 |
+
return img
|
69 |
+
|
70 |
+
def process_img(image):
|
71 |
+
img = np.array(image)
|
72 |
+
img = img / 255.
|
73 |
+
img = img.astype(np.float32)
|
74 |
+
y = torch.tensor(img).permute(2,0,1).unsqueeze(0).to(device)
|
75 |
+
|
76 |
+
with torch.no_grad():
|
77 |
+
enhanced_img, control_points = model(y, return_curves=True)
|
78 |
+
|
79 |
+
img_curves = [get_named_curves(control_points_i) for control_points_i in control_points]
|
80 |
+
|
81 |
+
enhanced_img = enhanced_img.squeeze().permute(1,2,0).clamp_(0, 1).cpu().detach().numpy()
|
82 |
+
enhanced_img = np.clip(enhanced_img, 0. , 1.)
|
83 |
+
|
84 |
+
enhanced_img = (enhanced_img * 255.0).round().astype(np.uint8) # float32 to uint8
|
85 |
+
oby_points = control_points[0][0, :, :, 0].detach().cpu().numpy()
|
86 |
+
achr_points = control_points[1][0, :, :, 0].detach().cpu().numpy()
|
87 |
+
pp_points = control_points[2][0, :, :, 0].detach().cpu().numpy()
|
88 |
+
red_points = control_points[3][0, :, :, 0].detach().cpu().numpy()
|
89 |
+
green_points = control_points[4][0, :, :, 0].detach().cpu().numpy()
|
90 |
+
blue_points = control_points[5][0, :, :, 0].detach().cpu().numpy()
|
91 |
+
|
92 |
+
return img_curves[0], oby_points[0, 0], oby_points[1, 0], oby_points[2, 0], oby_points[0, 1], oby_points[1, 1], oby_points[2, 1], oby_points[0, 2], oby_points[1, 2], oby_points[2, 2], oby_points[0, 3], oby_points[1, 3], oby_points[2, 3], oby_points[0, 4], oby_points[1, 4], oby_points[2, 4], oby_points[0, 5], oby_points[1, 5], oby_points[2, 5], oby_points[0, 6], oby_points[1, 6], oby_points[2, 6], oby_points[0, 7], oby_points[1, 7], oby_points[2, 7], oby_points[0, 8], oby_points[1, 8], oby_points[2, 8], oby_points[0, 9], oby_points[1, 9], oby_points[2, 9], oby_points[0, 10], oby_points[1, 10], oby_points[2, 10], img_curves[1], achr_points[0, 0], achr_points[1, 0], achr_points[2, 0], achr_points[0, 1], achr_points[1, 1], achr_points[2, 1], achr_points[0, 2], achr_points[1, 2], achr_points[2, 2], achr_points[0, 3], achr_points[1, 3], achr_points[2, 3], achr_points[0, 4], achr_points[1, 4], achr_points[2, 4], achr_points[0, 5], achr_points[1, 5], achr_points[2, 5], achr_points[0, 6], achr_points[1, 6], achr_points[2, 6], achr_points[0, 7], achr_points[1, 7], achr_points[2, 7], achr_points[0, 8], achr_points[1, 8], achr_points[2, 8], achr_points[0, 9], achr_points[1, 9], achr_points[2, 9], achr_points[0, 10], achr_points[1, 10], achr_points[2, 10], img_curves[2], pp_points[0, 0], pp_points[1, 0], pp_points[2, 0], pp_points[0, 1], pp_points[1, 1], pp_points[2, 1], pp_points[0, 2], pp_points[1, 2], pp_points[2, 2], pp_points[0, 3], pp_points[1, 3], pp_points[2, 3], pp_points[0, 4], pp_points[1, 4], pp_points[2, 4], pp_points[0, 5], pp_points[1, 5], pp_points[2, 5], pp_points[0, 6], pp_points[1, 6], pp_points[2, 6], pp_points[0, 7], pp_points[1, 7], pp_points[2, 7], pp_points[0, 8], pp_points[1, 8], pp_points[2, 8], pp_points[0, 9], pp_points[1, 9], pp_points[2, 9], pp_points[0, 10], pp_points[1, 10], pp_points[2, 10], img_curves[3], red_points[0, 0], red_points[1, 0], red_points[2, 0], red_points[0, 1], red_points[1, 1], red_points[2, 1], red_points[0, 2], red_points[1, 2], red_points[2, 2], red_points[0, 3], red_points[1, 3], red_points[2, 3], red_points[0, 4], red_points[1, 4], red_points[2, 4], red_points[0, 5], red_points[1, 5], red_points[2, 5], red_points[0, 6], red_points[1, 6], red_points[2, 6], red_points[0, 7], red_points[1, 7], red_points[2, 7], red_points[0, 8], red_points[1, 8], red_points[2, 8], red_points[0, 9], red_points[1, 9], red_points[2, 9], red_points[0, 10], red_points[1, 10], red_points[2, 10], img_curves[4], green_points[0, 0], green_points[1, 0], green_points[2, 0], green_points[0, 1], green_points[1, 1], green_points[2, 1], green_points[0, 2], green_points[1, 2], green_points[2, 2], green_points[0, 3], green_points[1, 3], green_points[2, 3], green_points[0, 4], green_points[1, 4], green_points[2, 4], green_points[0, 5], green_points[1, 5], green_points[2, 5], green_points[0, 6], green_points[1, 6], green_points[2, 6], green_points[0, 7], green_points[1, 7], green_points[2, 7], green_points[0, 8], green_points[1, 8], green_points[2, 8], green_points[0, 9], green_points[1, 9], green_points[2, 9], green_points[0, 10], green_points[1, 10], green_points[2, 10], img_curves[5], blue_points[0, 0], blue_points[1, 0], blue_points[2, 0], blue_points[0, 1], blue_points[1, 1], blue_points[2, 1], blue_points[0, 2], blue_points[1, 2], blue_points[2, 2], blue_points[0, 3], blue_points[1, 3], blue_points[2, 3], blue_points[0, 4], blue_points[1, 4], blue_points[2, 4], blue_points[0, 5], blue_points[1, 5], blue_points[2, 5], blue_points[0, 6], blue_points[1, 6], blue_points[2, 6], blue_points[0, 7], blue_points[1, 7], blue_points[2, 7], blue_points[0, 8], blue_points[1, 8], blue_points[2, 8], blue_points[0, 9], blue_points[1, 9], blue_points[2, 9], blue_points[0, 10], blue_points[1, 10], blue_points[2, 10], Image.fromarray(enhanced_img)
|
93 |
+
|
94 |
+
def process_img_with_sliders(image, oby_red_p0, oby_green_p0, oby_blue_p0, oby_red_p1, oby_green_p1, oby_blue_p1, oby_red_p2, oby_green_p2, oby_blue_p2, oby_red_p3, oby_green_p3, oby_blue_p3, oby_red_p4, oby_green_p4, oby_blue_p4, oby_red_p5, oby_green_p5, oby_blue_p5, oby_red_p6, oby_green_p6, oby_blue_p6, oby_red_p7, oby_green_p7, oby_blue_p7, oby_red_p8, oby_green_p8, oby_blue_p8, oby_red_p9, oby_green_p9, oby_blue_p9, oby_red_p10, oby_green_p10, oby_blue_p10,
|
95 |
+
achro_red_p0, achro_green_p0, achro_blue_p0, achro_red_p1, achro_green_p1, achro_blue_p1, achro_red_p2, achro_green_p2, achro_blue_p2, achro_red_p3, achro_green_p3, achro_blue_p3, achro_red_p4, achro_green_p4, achro_blue_p4, achro_red_p5, achro_green_p5, achro_blue_p5, achro_red_p6, achro_green_p6, achro_blue_p6, achro_red_p7, achro_green_p7, achro_blue_p7, achro_red_p8, achro_green_p8, achro_blue_p8, achro_red_p9, achro_green_p9, achro_blue_p9, achro_red_p10, achro_green_p10, achro_blue_p10,
|
96 |
+
pp_red_p0, pp_green_p0, pp_blue_p0, pp_red_p1, pp_green_p1, pp_blue_p1, pp_red_p2, pp_green_p2, pp_blue_p2, pp_red_p3, pp_green_p3, pp_blue_p3, pp_red_p4, pp_green_p4, pp_blue_p4, pp_red_p5, pp_green_p5, pp_blue_p5, pp_red_p6, pp_green_p6, pp_blue_p6, pp_red_p7, pp_green_p7, pp_blue_p7, pp_red_p8, pp_green_p8, pp_blue_p8, pp_red_p9, pp_green_p9, pp_blue_p9, pp_red_p10, pp_green_p10, pp_blue_p10,
|
97 |
+
red_red_p0, red_green_p0, red_blue_p0, red_red_p1, red_green_p1, red_blue_p1, red_red_p2, red_green_p2, red_blue_p2, red_red_p3, red_green_p3, red_blue_p3, red_red_p4, red_green_p4, red_blue_p4, red_red_p5, red_green_p5, red_blue_p5, red_red_p6, red_green_p6, red_blue_p6, red_red_p7, red_green_p7, red_blue_p7, red_red_p8, red_green_p8, red_blue_p8, red_red_p9, red_green_p9, red_blue_p9, red_red_p10, red_green_p10, red_blue_p10,
|
98 |
+
green_red_p0, green_green_p0, green_blue_p0, green_red_p1, green_green_p1, green_blue_p1, green_red_p2, green_green_p2, green_blue_p2, green_red_p3, green_green_p3, green_blue_p3, green_red_p4, green_green_p4, green_blue_p4, green_red_p5, green_green_p5, green_blue_p5, green_red_p6, green_green_p6, green_blue_p6, green_red_p7, green_green_p7, green_blue_p7, green_red_p8, green_green_p8, green_blue_p8, green_red_p9, green_green_p9, green_blue_p9, green_red_p10, green_green_p10, green_blue_p10,
|
99 |
+
blue_red_p0, blue_green_p0, blue_blue_p0, blue_red_p1, blue_green_p1, blue_blue_p1, blue_red_p2, blue_green_p2, blue_blue_p2, blue_red_p3, blue_green_p3, blue_blue_p3, blue_red_p4, blue_green_p4, blue_blue_p4, blue_red_p5, blue_green_p5, blue_blue_p5, blue_red_p6, blue_green_p6, blue_blue_p6, blue_red_p7, blue_green_p7, blue_blue_p7, blue_red_p8, blue_green_p8, blue_blue_p8, blue_red_p9, blue_green_p9, blue_blue_p9, blue_red_p10, blue_green_p10, blue_blue_p10,
|
100 |
+
):
|
101 |
+
|
102 |
+
x = np.linspace(0, 1, 11)
|
103 |
+
oby_r_y = [float(oby_red_p0), float(oby_red_p1), float(oby_red_p2), float(oby_red_p3), float(oby_red_p4), float(oby_red_p5), float(oby_red_p6), float(oby_red_p7), float(oby_red_p8), float(oby_red_p9), float(oby_red_p10)]
|
104 |
+
oby_g_y = [float(oby_green_p0), float(oby_green_p1), float(oby_green_p2), float(oby_green_p3), float(oby_green_p4), float(oby_green_p5), float(oby_green_p6), float(oby_green_p7), float(oby_green_p8), float(oby_green_p9), float(oby_green_p10)]
|
105 |
+
oby_b_y = [float(oby_blue_p0), float(oby_blue_p1), float(oby_blue_p2), float(oby_blue_p3), float(oby_blue_p4), float(oby_blue_p5), float(oby_blue_p6), float(oby_blue_p7), float(oby_blue_p8), float(oby_blue_p9), float(oby_blue_p10)]
|
106 |
+
achro_r_y = [float(achro_red_p0), float(achro_red_p1), float(achro_red_p2), float(achro_red_p3), float(achro_red_p4), float(achro_red_p5), float(achro_red_p6), float(achro_red_p7), float(achro_red_p8), float(achro_red_p9), float(achro_red_p10)]
|
107 |
+
achro_g_y = [float(achro_green_p0), float(achro_green_p1), float(achro_green_p2), float(achro_green_p3), float(achro_green_p4), float(achro_green_p5), float(achro_green_p6), float(achro_green_p7), float(achro_green_p8), float(achro_green_p9), float(achro_green_p10)]
|
108 |
+
achro_b_y = [float(achro_blue_p0), float(achro_blue_p1), float(achro_blue_p2), float(achro_blue_p3), float(achro_blue_p4), float(achro_blue_p5), float(achro_blue_p6), float(achro_blue_p7), float(achro_blue_p8), float(achro_blue_p9), float(achro_blue_p10)]
|
109 |
+
pp_r_y = [float(pp_red_p0), float(pp_red_p1), float(pp_red_p2), float(pp_red_p3), float(pp_red_p4), float(pp_red_p5), float(pp_red_p6), float(pp_red_p7), float(pp_red_p8), float(pp_red_p9), float(pp_red_p10)]
|
110 |
+
pp_g_y = [float(pp_green_p0), float(pp_green_p1), float(pp_green_p2), float(pp_green_p3), float(pp_green_p4), float(pp_green_p5), float(pp_green_p6), float(pp_green_p7), float(pp_green_p8), float(pp_green_p9), float(pp_green_p10)]
|
111 |
+
pp_b_y = [float(pp_blue_p0), float(pp_blue_p1), float(pp_blue_p2), float(pp_blue_p3), float(pp_blue_p4), float(pp_blue_p5), float(pp_blue_p6), float(pp_blue_p7), float(pp_blue_p8), float(pp_blue_p9), float(pp_blue_p10)]
|
112 |
+
red_r_y = [float(red_red_p0), float(red_red_p1), float(red_red_p2), float(red_red_p3), float(red_red_p4), float(red_red_p5), float(red_red_p6), float(red_red_p7), float(red_red_p8), float(red_red_p9), float(red_red_p10)]
|
113 |
+
red_g_y = [float(red_green_p0), float(red_green_p1), float(red_green_p2), float(red_green_p3), float(red_green_p4), float(red_green_p5), float(red_green_p6), float(red_green_p7), float(red_green_p8), float(red_green_p9), float(red_green_p10)]
|
114 |
+
red_b_y = [float(red_blue_p0), float(red_blue_p1), float(red_blue_p2), float(red_blue_p3), float(red_blue_p4), float(red_blue_p5), float(red_blue_p6), float(red_blue_p7), float(red_blue_p8), float(red_blue_p9), float(red_blue_p10)]
|
115 |
+
green_r_y = [float(green_red_p0), float(green_red_p1), float(green_red_p2), float(green_red_p3), float(green_red_p4), float(green_red_p5), float(green_red_p6), float(green_red_p7), float(green_red_p8), float(green_red_p9), float(green_red_p10)]
|
116 |
+
green_g_y = [float(green_green_p0), float(green_green_p1), float(green_green_p2), float(green_green_p3), float(green_green_p4), float(green_green_p5), float(green_green_p6), float(green_green_p7), float(green_green_p8), float(green_green_p9), float(green_green_p10)]
|
117 |
+
green_b_y = [float(green_blue_p0), float(green_blue_p1), float(green_blue_p2), float(green_blue_p3), float(green_blue_p4), float(green_blue_p5), float(green_blue_p6), float(green_blue_p7), float(green_blue_p8), float(green_blue_p9), float(green_blue_p10)]
|
118 |
+
blue_r_y = [float(blue_red_p0), float(blue_red_p1), float(blue_red_p2), float(blue_red_p3), float(blue_red_p4), float(blue_red_p5), float(blue_red_p6), float(blue_red_p7), float(blue_red_p8), float(blue_red_p9), float(blue_red_p10)]
|
119 |
+
blue_g_y = [float(blue_green_p0), float(blue_green_p1), float(blue_green_p2), float(blue_green_p3), float(blue_green_p4), float(blue_green_p5), float(blue_green_p6), float(blue_green_p7), float(blue_green_p8), float(blue_green_p9), float(blue_green_p10)]
|
120 |
+
blue_b_y = [float(blue_blue_p0), float(blue_blue_p1), float(blue_blue_p2), float(blue_blue_p3), float(blue_blue_p4), float(blue_blue_p5), float(blue_blue_p6), float(blue_blue_p7), float(blue_blue_p8), float(blue_blue_p9), float(blue_blue_p10)]
|
121 |
+
|
122 |
+
oby_y = torch.concatenate([torch.tensor(np.array([oby_r_y, x]).T).unsqueeze(0), torch.tensor(np.array([oby_g_y, x]).T).unsqueeze(0), torch.tensor(np.array([oby_b_y, x]).T).unsqueeze(0)], dim=0).unsqueeze(0).to(device)
|
123 |
+
achro_y = torch.concatenate([torch.tensor(np.array([achro_r_y, x]).T).unsqueeze(0), torch.tensor(np.array([achro_g_y, x]).T).unsqueeze(0), torch.tensor(np.array([achro_b_y, x]).T).unsqueeze(0)], dim=0).unsqueeze(0).to(device)
|
124 |
+
pp_y = torch.concatenate([torch.tensor(np.array([pp_r_y, x]).T).unsqueeze(0), torch.tensor(np.array([pp_g_y, x]).T).unsqueeze(0), torch.tensor(np.array([pp_b_y, x]).T).unsqueeze(0)], dim=0).unsqueeze(0).to(device)
|
125 |
+
red_y = torch.concatenate([torch.tensor(np.array([red_r_y, x]).T).unsqueeze(0), torch.tensor(np.array([red_g_y, x]).T).unsqueeze(0), torch.tensor(np.array([red_b_y, x]).T).unsqueeze(0)], dim=0).unsqueeze(0).to(device)
|
126 |
+
green_y = torch.concatenate([torch.tensor(np.array([green_r_y, x]).T).unsqueeze(0), torch.tensor(np.array([green_g_y, x]).T).unsqueeze(0), torch.tensor(np.array([green_b_y, x]).T).unsqueeze(0)], dim=0).unsqueeze(0).to(device)
|
127 |
+
blue_y = torch.concatenate([torch.tensor(np.array([blue_r_y, x]).T).unsqueeze(0), torch.tensor(np.array([blue_g_y, x]).T).unsqueeze(0), torch.tensor(np.array([blue_b_y, x]).T).unsqueeze(0)], dim=0).unsqueeze(0).to(device)
|
128 |
+
|
129 |
+
control_points = [oby_y, achro_y, pp_y, red_y, green_y, blue_y]
|
130 |
+
|
131 |
+
img = np.array(image)
|
132 |
+
img = img / 255.
|
133 |
+
img = img.astype(np.float32)
|
134 |
+
y = torch.tensor(img).permute(2,0,1).unsqueeze(0).to(device)
|
135 |
+
|
136 |
+
with torch.no_grad():
|
137 |
+
enhanced_img, control_points = model(y, return_curves=True, control_points=control_points)
|
138 |
+
|
139 |
+
img_curves = [get_named_curves(control_points_i) for control_points_i in control_points]
|
140 |
+
|
141 |
+
enhanced_img = enhanced_img.squeeze().permute(1,2,0).clamp_(0, 1).cpu().detach().numpy()
|
142 |
+
enhanced_img = np.clip(enhanced_img, 0. , 1.)
|
143 |
+
|
144 |
+
enhanced_img = (enhanced_img * 255.0).round().astype(np.uint8) # float32 to uint8
|
145 |
+
oby_points = control_points[0][0, :, :, 0].detach().cpu().numpy()
|
146 |
+
achr_points = control_points[1][0, :, :, 0].detach().cpu().numpy()
|
147 |
+
pp_points = control_points[2][0, :, :, 0].detach().cpu().numpy()
|
148 |
+
red_points = control_points[3][0, :, :, 0].detach().cpu().numpy()
|
149 |
+
green_points = control_points[4][0, :, :, 0].detach().cpu().numpy()
|
150 |
+
blue_points = control_points[5][0, :, :, 0].detach().cpu().numpy()
|
151 |
+
|
152 |
+
return img_curves[0], oby_points[0, 0], oby_points[1, 0], oby_points[2, 0], oby_points[0, 1], oby_points[1, 1], oby_points[2, 1], oby_points[0, 2], oby_points[1, 2], oby_points[2, 2], oby_points[0, 3], oby_points[1, 3], oby_points[2, 3], oby_points[0, 4], oby_points[1, 4], oby_points[2, 4], oby_points[0, 5], oby_points[1, 5], oby_points[2, 5], oby_points[0, 6], oby_points[1, 6], oby_points[2, 6], oby_points[0, 7], oby_points[1, 7], oby_points[2, 7], oby_points[0, 8], oby_points[1, 8], oby_points[2, 8], oby_points[0, 9], oby_points[1, 9], oby_points[2, 9], oby_points[0, 10], oby_points[1, 10], oby_points[2, 10], img_curves[1], achr_points[0, 0], achr_points[1, 0], achr_points[2, 0], achr_points[0, 1], achr_points[1, 1], achr_points[2, 1], achr_points[0, 2], achr_points[1, 2], achr_points[2, 2], achr_points[0, 3], achr_points[1, 3], achr_points[2, 3], achr_points[0, 4], achr_points[1, 4], achr_points[2, 4], achr_points[0, 5], achr_points[1, 5], achr_points[2, 5], achr_points[0, 6], achr_points[1, 6], achr_points[2, 6], achr_points[0, 7], achr_points[1, 7], achr_points[2, 7], achr_points[0, 8], achr_points[1, 8], achr_points[2, 8], achr_points[0, 9], achr_points[1, 9], achr_points[2, 9], achr_points[0, 10], achr_points[1, 10], achr_points[2, 10], img_curves[2], pp_points[0, 0], pp_points[1, 0], pp_points[2, 0], pp_points[0, 1], pp_points[1, 1], pp_points[2, 1], pp_points[0, 2], pp_points[1, 2], pp_points[2, 2], pp_points[0, 3], pp_points[1, 3], pp_points[2, 3], pp_points[0, 4], pp_points[1, 4], pp_points[2, 4], pp_points[0, 5], pp_points[1, 5], pp_points[2, 5], pp_points[0, 6], pp_points[1, 6], pp_points[2, 6], pp_points[0, 7], pp_points[1, 7], pp_points[2, 7], pp_points[0, 8], pp_points[1, 8], pp_points[2, 8], pp_points[0, 9], pp_points[1, 9], pp_points[2, 9], pp_points[0, 10], pp_points[1, 10], pp_points[2, 10], img_curves[3], red_points[0, 0], red_points[1, 0], red_points[2, 0], red_points[0, 1], red_points[1, 1], red_points[2, 1], red_points[0, 2], red_points[1, 2], red_points[2, 2], red_points[0, 3], red_points[1, 3], red_points[2, 3], red_points[0, 4], red_points[1, 4], red_points[2, 4], red_points[0, 5], red_points[1, 5], red_points[2, 5], red_points[0, 6], red_points[1, 6], red_points[2, 6], red_points[0, 7], red_points[1, 7], red_points[2, 7], red_points[0, 8], red_points[1, 8], red_points[2, 8], red_points[0, 9], red_points[1, 9], red_points[2, 9], red_points[0, 10], red_points[1, 10], red_points[2, 10], img_curves[4], green_points[0, 0], green_points[1, 0], green_points[2, 0], green_points[0, 1], green_points[1, 1], green_points[2, 1], green_points[0, 2], green_points[1, 2], green_points[2, 2], green_points[0, 3], green_points[1, 3], green_points[2, 3], green_points[0, 4], green_points[1, 4], green_points[2, 4], green_points[0, 5], green_points[1, 5], green_points[2, 5], green_points[0, 6], green_points[1, 6], green_points[2, 6], green_points[0, 7], green_points[1, 7], green_points[2, 7], green_points[0, 8], green_points[1, 8], green_points[2, 8], green_points[0, 9], green_points[1, 9], green_points[2, 9], green_points[0, 10], green_points[1, 10], green_points[2, 10], img_curves[5], blue_points[0, 0], blue_points[1, 0], blue_points[2, 0], blue_points[0, 1], blue_points[1, 1], blue_points[2, 1], blue_points[0, 2], blue_points[1, 2], blue_points[2, 2], blue_points[0, 3], blue_points[1, 3], blue_points[2, 3], blue_points[0, 4], blue_points[1, 4], blue_points[2, 4], blue_points[0, 5], blue_points[1, 5], blue_points[2, 5], blue_points[0, 6], blue_points[1, 6], blue_points[2, 6], blue_points[0, 7], blue_points[1, 7], blue_points[2, 7], blue_points[0, 8], blue_points[1, 8], blue_points[2, 8], blue_points[0, 9], blue_points[1, 9], blue_points[2, 9], blue_points[0, 10], blue_points[1, 10], blue_points[2, 10], Image.fromarray(enhanced_img)
|
153 |
+
|
154 |
+
|
155 |
+
|
156 |
+
|
157 |
+
title = "NamedCurves🌈🤗"
|
158 |
+
description = '''
|
159 |
+
'''
|
160 |
+
|
161 |
+
article = "<p style='text-align: center'><a href='https://github.com/davidserra9/namedcurves' target='_blank'>NamedCurves: Learned Image Enhancement via Color Naming</a></p>"
|
162 |
+
|
163 |
+
#### Image,Prompts examples
|
164 |
+
#examples = [['assets/a4957-input.png']]
|
165 |
+
|
166 |
+
css = """
|
167 |
+
.image-frame img, .image-container img {
|
168 |
+
width: auto;
|
169 |
+
height: auto;
|
170 |
+
max-width: none;
|
171 |
+
}
|
172 |
+
"""
|
173 |
+
|
174 |
+
with gr.Blocks() as demo:
|
175 |
+
gr.Markdown("""
|
176 |
+
## [NamedCurves](https://namedcurves.github.io/): Learned Image Enhancement via Color Naming
|
177 |
+
[David Serrano-Lozano](https://davidserra9.github.io/), [Luis Herranz](https://www.lherranz.org/), [Michael S. Brown](https://www.eecs.yorku.ca/~mbrown/), [Javier Vazquez-Corral](https://jvazquezcorral.github.io/)
|
178 |
+
Computer Vision Center, Universitat Autònoma de Barcelona, Universidad Autónoma de Madrid, York University
|
179 |
+
|
180 |
+
**NamedCurves decomposes an image into a small set of named colors and enhances them using a learned set of tone curves.** By making this decomposition, we improve the interactivity of the model as the user can modify the tone curves assigned to color name to manipulate only a certain color of the image.
|
181 |
+
|
182 |
+
* Upload an image and click "Run" to automatically enhance the image.
|
183 |
+
* Then, you can adjust the tone curves for each color name to make the retouched version to your liking. Manipulate the sliders corresponding to the control points that define the tone curves. Note that for simplicity, we show the intensity values of the control points instead of the RGB values of each control point.
|
184 |
+
|
185 |
+
""")
|
186 |
+
with gr.Row():
|
187 |
+
with gr.Column():
|
188 |
+
image = gr.Image(type="pil", label="Input")
|
189 |
+
run_btn = gr.Button("Run")
|
190 |
+
examples = gr.Examples(['assets/a4957-input.png', 'assets/a4996-input.png', 'assets/a4998-input.png', 'assets/a5000-input.png',
|
191 |
+
'assets/a4986-input.png', 'assets/a4988-input.png', 'assets/a4990-input.png', 'assets/a4993-input.png'], inputs=[image])
|
192 |
+
|
193 |
+
with gr.Tabs() as input_tabs:
|
194 |
+
with gr.Tab(label="Orange", id=0) as oby_curves_tab:
|
195 |
+
oby_curves = gr.Image(label="Orange-Brown-Yellow Curves", type="pil")
|
196 |
+
with gr.Tabs() as channel_tabs:
|
197 |
+
with gr.Tab(label="R", id=0) as oby_red_curves_tab:
|
198 |
+
oby_red_p0 = gr.Slider(0, 1, label="R-P0", interactive=True)
|
199 |
+
oby_red_p1 = gr.Slider(0, 1, label="R-P1", interactive=True)
|
200 |
+
oby_red_p2 = gr.Slider(0, 1, label="R-P2", interactive=True)
|
201 |
+
oby_red_p3 = gr.Slider(0, 1, label="R-P3", interactive=True)
|
202 |
+
oby_red_p4 = gr.Slider(0, 1, label="R-P4", interactive=True)
|
203 |
+
oby_red_p5 = gr.Slider(0, 1, label="R-P5", interactive=True)
|
204 |
+
oby_red_p6 = gr.Slider(0, 1, label="R-P6", interactive=True)
|
205 |
+
oby_red_p7 = gr.Slider(0, 1, label="R-P7", interactive=True)
|
206 |
+
oby_red_p8 = gr.Slider(0, 1, label="R-P8", interactive=True)
|
207 |
+
oby_red_p9 = gr.Slider(0, 1, label="R-P9", interactive=True)
|
208 |
+
oby_red_p10 = gr.Slider(0, 1, label="R-P10", interactive=True)
|
209 |
+
with gr.Tab(label="G", id=1) as oby_green_curves_tab:
|
210 |
+
oby_green_p0 = gr.Slider(0, 1, label="G-P0", interactive=True)
|
211 |
+
oby_green_p1 = gr.Slider(0, 1, label="G-P1", interactive=True)
|
212 |
+
oby_green_p2 = gr.Slider(0, 1, label="G-P2", interactive=True)
|
213 |
+
oby_green_p3 = gr.Slider(0, 1, label="G-P3", interactive=True)
|
214 |
+
oby_green_p4 = gr.Slider(0, 1, label="G-P4", interactive=True)
|
215 |
+
oby_green_p5 = gr.Slider(0, 1, label="G-P5", interactive=True)
|
216 |
+
oby_green_p6 = gr.Slider(0, 1, label="G-P6", interactive=True)
|
217 |
+
oby_green_p7 = gr.Slider(0, 1, label="G-P7", interactive=True)
|
218 |
+
oby_green_p8 = gr.Slider(0, 1, label="G-P8", interactive=True)
|
219 |
+
oby_green_p9 = gr.Slider(0, 1, label="G-P9", interactive=True)
|
220 |
+
oby_green_p10 = gr.Slider(0, 1, label="G-P10", interactive=True)
|
221 |
+
with gr.Tab(label="B", id=2) as oby_blue_curves_tab:
|
222 |
+
oby_blue_p0 = gr.Slider(0, 1, label="B-P0", interactive=True)
|
223 |
+
oby_blue_p1 = gr.Slider(0, 1, label="B-P1", interactive=True)
|
224 |
+
oby_blue_p2 = gr.Slider(0, 1, label="B-P2", interactive=True)
|
225 |
+
oby_blue_p3 = gr.Slider(0, 1, label="B-P3", interactive=True)
|
226 |
+
oby_blue_p4 = gr.Slider(0, 1, label="B-P4", interactive=True)
|
227 |
+
oby_blue_p5 = gr.Slider(0, 1, label="B-P5", interactive=True)
|
228 |
+
oby_blue_p6 = gr.Slider(0, 1, label="B-P6", interactive=True)
|
229 |
+
oby_blue_p7 = gr.Slider(0, 1, label="B-P7", interactive=True)
|
230 |
+
oby_blue_p8 = gr.Slider(0, 1, label="B-P8", interactive=True)
|
231 |
+
oby_blue_p9 = gr.Slider(0, 1, label="B-P9", interactive=True)
|
232 |
+
oby_blue_p10 = gr.Slider(0, 1, label="B-P10", interactive=True)
|
233 |
+
|
234 |
+
with gr.Tab(label="Achr", id=1) as achro_curves_tab:
|
235 |
+
achro_curves = gr.Image(label="Achromatic Curves", type="pil")
|
236 |
+
with gr.Tabs() as channel_tabs:
|
237 |
+
with gr.Tab(label="R", id=0) as achro_red_curves_tab:
|
238 |
+
achro_red_p0 = gr.Slider(0, 1, label="R-P0", interactive=True)
|
239 |
+
achro_red_p1 = gr.Slider(0, 1, label="R-P1", interactive=True)
|
240 |
+
achro_red_p2 = gr.Slider(0, 1, label="R-P2", interactive=True)
|
241 |
+
achro_red_p3 = gr.Slider(0, 1, label="R-P3", interactive=True)
|
242 |
+
achro_red_p4 = gr.Slider(0, 1, label="R-P4", interactive=True)
|
243 |
+
achro_red_p5 = gr.Slider(0, 1, label="R-P5", interactive=True)
|
244 |
+
achro_red_p6 = gr.Slider(0, 1, label="R-P6", interactive=True)
|
245 |
+
achro_red_p7 = gr.Slider(0, 1, label="R-P7", interactive=True)
|
246 |
+
achro_red_p8 = gr.Slider(0, 1, label="R-P8", interactive=True)
|
247 |
+
achro_red_p9 = gr.Slider(0, 1, label="R-P9", interactive=True)
|
248 |
+
achro_red_p10 = gr.Slider(0, 1, label="R-P10", interactive=True)
|
249 |
+
with gr.Tab(label="G", id=1) as achro_green_curves_tab:
|
250 |
+
achro_green_p0 = gr.Slider(0, 1, label="G-P0", interactive=True)
|
251 |
+
achro_green_p1 = gr.Slider(0, 1, label="G-P1", interactive=True)
|
252 |
+
achro_green_p2 = gr.Slider(0, 1, label="G-P2", interactive=True)
|
253 |
+
achro_green_p3 = gr.Slider(0, 1, label="G-P3", interactive=True)
|
254 |
+
achro_green_p4 = gr.Slider(0, 1, label="G-P4", interactive=True)
|
255 |
+
achro_green_p5 = gr.Slider(0, 1, label="G-P5", interactive=True)
|
256 |
+
achro_green_p6 = gr.Slider(0, 1, label="G-P6", interactive=True)
|
257 |
+
achro_green_p7 = gr.Slider(0, 1, label="G-P7", interactive=True)
|
258 |
+
achro_green_p8 = gr.Slider(0, 1, label="G-P8", interactive=True)
|
259 |
+
achro_green_p9 = gr.Slider(0, 1, label="G-P9", interactive=True)
|
260 |
+
achro_green_p10 = gr.Slider(0, 1, label="G-P10", interactive=True)
|
261 |
+
with gr.Tab(label="B", id=2) as achro_blue_curves_tab:
|
262 |
+
achro_blue_p0 = gr.Slider(0, 1, label="B-P0", interactive=True)
|
263 |
+
achro_blue_p1 = gr.Slider(0, 1, label="B-P1", interactive=True)
|
264 |
+
achro_blue_p2 = gr.Slider(0, 1, label="B-P2", interactive=True)
|
265 |
+
achro_blue_p3 = gr.Slider(0, 1, label="B-P3", interactive=True)
|
266 |
+
achro_blue_p4 = gr.Slider(0, 1, label="B-P4", interactive=True)
|
267 |
+
achro_blue_p5 = gr.Slider(0, 1, label="B-P5", interactive=True)
|
268 |
+
achro_blue_p6 = gr.Slider(0, 1, label="B-P6", interactive=True)
|
269 |
+
achro_blue_p7 = gr.Slider(0, 1, label="B-P7", interactive=True)
|
270 |
+
achro_blue_p8 = gr.Slider(0, 1, label="B-P8", interactive=True)
|
271 |
+
achro_blue_p9 = gr.Slider(0, 1, label="B-P9", interactive=True)
|
272 |
+
achro_blue_p10 = gr.Slider(0, 1, label="B-P10", interactive=True)
|
273 |
+
|
274 |
+
with gr.Tab(label="Pink", id=2) as pink_purple_curves_tab:
|
275 |
+
pink_purple_curves = gr.Image(label="Pink-Purple Curves", type="pil")
|
276 |
+
with gr.Tabs() as channel_tabs:
|
277 |
+
with gr.Tab(label="R", id=0) as pp_red_curves_tab:
|
278 |
+
pp_red_p0 = gr.Slider(0, 1, label="R-P0", interactive=True)
|
279 |
+
pp_red_p1 = gr.Slider(0, 1, label="R-P1", interactive=True)
|
280 |
+
pp_red_p2 = gr.Slider(0, 1, label="R-P2", interactive=True)
|
281 |
+
pp_red_p3 = gr.Slider(0, 1, label="R-P3", interactive=True)
|
282 |
+
pp_red_p4 = gr.Slider(0, 1, label="R-P4", interactive=True)
|
283 |
+
pp_red_p5 = gr.Slider(0, 1, label="R-P5", interactive=True)
|
284 |
+
pp_red_p6 = gr.Slider(0, 1, label="R-P6", interactive=True)
|
285 |
+
pp_red_p7 = gr.Slider(0, 1, label="R-P7", interactive=True)
|
286 |
+
pp_red_p8 = gr.Slider(0, 1, label="R-P8", interactive=True)
|
287 |
+
pp_red_p9 = gr.Slider(0, 1, label="R-P9", interactive=True)
|
288 |
+
pp_red_p10 = gr.Slider(0, 1, label="R-P10", interactive=True)
|
289 |
+
with gr.Tab(label="G", id=1) as pp_green_curves_tab:
|
290 |
+
pp_green_p0 = gr.Slider(0, 1, label="G-P0", interactive=True)
|
291 |
+
pp_green_p1 = gr.Slider(0, 1, label="G-P1", interactive=True)
|
292 |
+
pp_green_p2 = gr.Slider(0, 1, label="G-P2", interactive=True)
|
293 |
+
pp_green_p3 = gr.Slider(0, 1, label="G-P3", interactive=True)
|
294 |
+
pp_green_p4 = gr.Slider(0, 1, label="G-P4", interactive=True)
|
295 |
+
pp_green_p5 = gr.Slider(0, 1, label="G-P5", interactive=True)
|
296 |
+
pp_green_p6 = gr.Slider(0, 1, label="G-P6", interactive=True)
|
297 |
+
pp_green_p7 = gr.Slider(0, 1, label="G-P7", interactive=True)
|
298 |
+
pp_green_p8 = gr.Slider(0, 1, label="G-P8", interactive=True)
|
299 |
+
pp_green_p9 = gr.Slider(0, 1, label="G-P9", interactive=True)
|
300 |
+
pp_green_p10 = gr.Slider(0, 1, label="G-P10", interactive=True)
|
301 |
+
with gr.Tab(label="B", id=2) as pp_blue_curves_tab:
|
302 |
+
pp_blue_p0 = gr.Slider(0, 1, label="B-P0", interactive=True)
|
303 |
+
pp_blue_p1 = gr.Slider(0, 1, label="B-P1", interactive=True)
|
304 |
+
pp_blue_p2 = gr.Slider(0, 1, label="B-P2", interactive=True)
|
305 |
+
pp_blue_p3 = gr.Slider(0, 1, label="B-P3", interactive=True)
|
306 |
+
pp_blue_p4 = gr.Slider(0, 1, label="B-P4", interactive=True)
|
307 |
+
pp_blue_p5 = gr.Slider(0, 1, label="B-P5", interactive=True)
|
308 |
+
pp_blue_p6 = gr.Slider(0, 1, label="B-P6", interactive=True)
|
309 |
+
pp_blue_p7 = gr.Slider(0, 1, label="B-P7", interactive=True)
|
310 |
+
pp_blue_p8 = gr.Slider(0, 1, label="B-P8", interactive=True)
|
311 |
+
pp_blue_p9 = gr.Slider(0, 1, label="B-P9", interactive=True)
|
312 |
+
pp_blue_p10 = gr.Slider(0, 1, label="B-P10", interactive=True)
|
313 |
+
|
314 |
+
with gr.Tab(label="Red", id=3) as red_curves_tab:
|
315 |
+
red_curves = gr.Image(label="Red Curves", type="pil")
|
316 |
+
with gr.Tabs() as channel_tabs:
|
317 |
+
with gr.Tab(label="R", id=0) as red_red_curves_tab:
|
318 |
+
red_red_p0 = gr.Slider(0, 1, label="R-P0", interactive=True)
|
319 |
+
red_red_p1 = gr.Slider(0, 1, label="R-P1", interactive=True)
|
320 |
+
red_red_p2 = gr.Slider(0, 1, label="R-P2", interactive=True)
|
321 |
+
red_red_p3 = gr.Slider(0, 1, label="R-P3", interactive=True)
|
322 |
+
red_red_p4 = gr.Slider(0, 1, label="R-P4", interactive=True)
|
323 |
+
red_red_p5 = gr.Slider(0, 1, label="R-P5", interactive=True)
|
324 |
+
red_red_p6 = gr.Slider(0, 1, label="R-P6", interactive=True)
|
325 |
+
red_red_p7 = gr.Slider(0, 1, label="R-P7", interactive=True)
|
326 |
+
red_red_p8 = gr.Slider(0, 1, label="R-P8", interactive=True)
|
327 |
+
red_red_p9 = gr.Slider(0, 1, label="R-P9", interactive=True)
|
328 |
+
red_red_p10 = gr.Slider(0, 1, label="R-P10", interactive=True)
|
329 |
+
with gr.Tab(label="G", id=1) as red_green_curves_tab:
|
330 |
+
red_green_p0 = gr.Slider(0, 1, label="G-P0", interactive=True)
|
331 |
+
red_green_p1 = gr.Slider(0, 1, label="G-P1", interactive=True)
|
332 |
+
red_green_p2 = gr.Slider(0, 1, label="G-P2", interactive=True)
|
333 |
+
red_green_p3 = gr.Slider(0, 1, label="G-P3", interactive=True)
|
334 |
+
red_green_p4 = gr.Slider(0, 1, label="G-P4", interactive=True)
|
335 |
+
red_green_p5 = gr.Slider(0, 1, label="G-P5", interactive=True)
|
336 |
+
red_green_p6 = gr.Slider(0, 1, label="G-P6", interactive=True)
|
337 |
+
red_green_p7 = gr.Slider(0, 1, label="G-P7", interactive=True)
|
338 |
+
red_green_p8 = gr.Slider(0, 1, label="G-P8", interactive=True)
|
339 |
+
red_green_p9 = gr.Slider(0, 1, label="G-P9", interactive=True)
|
340 |
+
red_green_p10 = gr.Slider(0, 1, label="G-P10", interactive=True)
|
341 |
+
with gr.Tab(label="B", id=2) as red_blue_curves_tab:
|
342 |
+
red_blue_p0 = gr.Slider(0, 1, label="B-P0", interactive=True)
|
343 |
+
red_blue_p1 = gr.Slider(0, 1, label="B-P1", interactive=True)
|
344 |
+
red_blue_p2 = gr.Slider(0, 1, label="B-P2", interactive=True)
|
345 |
+
red_blue_p3 = gr.Slider(0, 1, label="B-P3", interactive=True)
|
346 |
+
red_blue_p4 = gr.Slider(0, 1, label="B-P4", interactive=True)
|
347 |
+
red_blue_p5 = gr.Slider(0, 1, label="B-P5", interactive=True)
|
348 |
+
red_blue_p6 = gr.Slider(0, 1, label="B-P6", interactive=True)
|
349 |
+
red_blue_p7 = gr.Slider(0, 1, label="B-P7", interactive=True)
|
350 |
+
red_blue_p8 = gr.Slider(0, 1, label="B-P8", interactive=True)
|
351 |
+
red_blue_p9 = gr.Slider(0, 1, label="B-P9", interactive=True)
|
352 |
+
red_blue_p10 = gr.Slider(0, 1, label="B-P10", interactive=True)
|
353 |
+
|
354 |
+
with gr.Tab(label="Green", id=4) as green_curves_tab:
|
355 |
+
green_curves = gr.Image(label="Green Curves", type="pil")
|
356 |
+
with gr.Tabs() as channel_tabs:
|
357 |
+
with gr.Tab(label="R", id=0) as green_red_curves_tab:
|
358 |
+
green_red_p0 = gr.Slider(0, 1, label="R-P0", interactive=True)
|
359 |
+
green_red_p1 = gr.Slider(0, 1, label="R-P1", interactive=True)
|
360 |
+
green_red_p2 = gr.Slider(0, 1, label="R-P2", interactive=True)
|
361 |
+
green_red_p3 = gr.Slider(0, 1, label="R-P3", interactive=True)
|
362 |
+
green_red_p4 = gr.Slider(0, 1, label="R-P4", interactive=True)
|
363 |
+
green_red_p5 = gr.Slider(0, 1, label="R-P5", interactive=True)
|
364 |
+
green_red_p6 = gr.Slider(0, 1, label="R-P6", interactive=True)
|
365 |
+
green_red_p7 = gr.Slider(0, 1, label="R-P7", interactive=True)
|
366 |
+
green_red_p8 = gr.Slider(0, 1, label="R-P8", interactive=True)
|
367 |
+
green_red_p9 = gr.Slider(0, 1, label="R-P9", interactive=True)
|
368 |
+
green_red_p10 = gr.Slider(0, 1, label="R-P10", interactive=True)
|
369 |
+
with gr.Tab(label="G", id=1) as green_green_curves_tab:
|
370 |
+
green_green_p0 = gr.Slider(0, 1, label="G-P0", interactive=True)
|
371 |
+
green_green_p1 = gr.Slider(0, 1, label="G-P1", interactive=True)
|
372 |
+
green_green_p2 = gr.Slider(0, 1, label="G-P2", interactive=True)
|
373 |
+
green_green_p3 = gr.Slider(0, 1, label="G-P3", interactive=True)
|
374 |
+
green_green_p4 = gr.Slider(0, 1, label="G-P4", interactive=True)
|
375 |
+
green_green_p5 = gr.Slider(0, 1, label="G-P5", interactive=True)
|
376 |
+
green_green_p6 = gr.Slider(0, 1, label="G-P6", interactive=True)
|
377 |
+
green_green_p7 = gr.Slider(0, 1, label="G-P7", interactive=True)
|
378 |
+
green_green_p8 = gr.Slider(0, 1, label="G-P8", interactive=True)
|
379 |
+
green_green_p9 = gr.Slider(0, 1, label="G-P9", interactive=True)
|
380 |
+
green_green_p10 = gr.Slider(0, 1, label="G-P10", interactive=True)
|
381 |
+
with gr.Tab(label="B", id=2) as green_blue_curves_tab:
|
382 |
+
green_blue_p0 = gr.Slider(0, 1, label="B-P0", interactive=True)
|
383 |
+
green_blue_p1 = gr.Slider(0, 1, label="B-P1", interactive=True)
|
384 |
+
green_blue_p2 = gr.Slider(0, 1, label="B-P2", interactive=True)
|
385 |
+
green_blue_p3 = gr.Slider(0, 1, label="B-P3", interactive=True)
|
386 |
+
green_blue_p4 = gr.Slider(0, 1, label="B-P4", interactive=True)
|
387 |
+
green_blue_p5 = gr.Slider(0, 1, label="B-P5", interactive=True)
|
388 |
+
green_blue_p6 = gr.Slider(0, 1, label="B-P6", interactive=True)
|
389 |
+
green_blue_p7 = gr.Slider(0, 1, label="B-P7", interactive=True)
|
390 |
+
green_blue_p8 = gr.Slider(0, 1, label="B-P8", interactive=True)
|
391 |
+
green_blue_p9 = gr.Slider(0, 1, label="B-P9", interactive=True)
|
392 |
+
green_blue_p10 = gr.Slider(0, 1, label="B-P10", interactive=True)
|
393 |
+
|
394 |
+
with gr.Tab(label="Blue", id=5) as blue_curves_tab:
|
395 |
+
blue_curves = gr.Image(label="Blue Curves", type="pil")
|
396 |
+
with gr.Tabs() as channel_tabs:
|
397 |
+
with gr.Tab(label="R", id=0) as blue_red_curves_tab:
|
398 |
+
blue_red_p0 = gr.Slider(0, 1, label="R-P0", interactive=True)
|
399 |
+
blue_red_p1 = gr.Slider(0, 1, label="R-P1", interactive=True)
|
400 |
+
blue_red_p2 = gr.Slider(0, 1, label="R-P2", interactive=True)
|
401 |
+
blue_red_p3 = gr.Slider(0, 1, label="R-P3", interactive=True)
|
402 |
+
blue_red_p4 = gr.Slider(0, 1, label="R-P4", interactive=True)
|
403 |
+
blue_red_p5 = gr.Slider(0, 1, label="R-P5", interactive=True)
|
404 |
+
blue_red_p6 = gr.Slider(0, 1, label="R-P6", interactive=True)
|
405 |
+
blue_red_p7 = gr.Slider(0, 1, label="R-P7", interactive=True)
|
406 |
+
blue_red_p8 = gr.Slider(0, 1, label="R-P8", interactive=True)
|
407 |
+
blue_red_p9 = gr.Slider(0, 1, label="R-P9", interactive=True)
|
408 |
+
blue_red_p10 = gr.Slider(0, 1, label="R-P10", interactive=True)
|
409 |
+
with gr.Tab(label="G", id=1) as blue_green_curves_tab:
|
410 |
+
blue_green_p0 = gr.Slider(0, 1, label="G-P0", interactive=True)
|
411 |
+
blue_green_p1 = gr.Slider(0, 1, label="G-P1", interactive=True)
|
412 |
+
blue_green_p2 = gr.Slider(0, 1, label="G-P2", interactive=True)
|
413 |
+
blue_green_p3 = gr.Slider(0, 1, label="G-P3", interactive=True)
|
414 |
+
blue_green_p4 = gr.Slider(0, 1, label="G-P4", interactive=True)
|
415 |
+
blue_green_p5 = gr.Slider(0, 1, label="G-P5", interactive=True)
|
416 |
+
blue_green_p6 = gr.Slider(0, 1, label="G-P6", interactive=True)
|
417 |
+
blue_green_p7 = gr.Slider(0, 1, label="G-P7", interactive=True)
|
418 |
+
blue_green_p8 = gr.Slider(0, 1, label="G-P8", interactive=True)
|
419 |
+
blue_green_p9 = gr.Slider(0, 1, label="G-P9", interactive=True)
|
420 |
+
blue_green_p10 = gr.Slider(0, 1, label="G-P10", interactive=True)
|
421 |
+
with gr.Tab(label="B", id=2) as blue_blue_curves_tab:
|
422 |
+
blue_blue_p0 = gr.Slider(0, 1, label="B-P0", interactive=True)
|
423 |
+
blue_blue_p1 = gr.Slider(0, 1, label="B-P1", interactive=True)
|
424 |
+
blue_blue_p2 = gr.Slider(0, 1, label="B-P2", interactive=True)
|
425 |
+
blue_blue_p3 = gr.Slider(0, 1, label="B-P3", interactive=True)
|
426 |
+
blue_blue_p4 = gr.Slider(0, 1, label="B-P4", interactive=True)
|
427 |
+
blue_blue_p5 = gr.Slider(0, 1, label="B-P5", interactive=True)
|
428 |
+
blue_blue_p6 = gr.Slider(0, 1, label="B-P6", interactive=True)
|
429 |
+
blue_blue_p7 = gr.Slider(0, 1, label="B-P7", interactive=True)
|
430 |
+
blue_blue_p8 = gr.Slider(0, 1, label="B-P8", interactive=True)
|
431 |
+
blue_blue_p9 = gr.Slider(0, 1, label="B-P9", interactive=True)
|
432 |
+
blue_blue_p10 = gr.Slider(0, 1, label="B-P10", interactive=True)
|
433 |
+
|
434 |
+
with gr.Column():
|
435 |
+
out_image = gr.Image(type="pil", label="Output")
|
436 |
+
recompute_btn = gr.Button("Recompute")
|
437 |
+
|
438 |
+
|
439 |
+
run_btn.click(
|
440 |
+
process_img,
|
441 |
+
inputs=[image],
|
442 |
+
outputs=[oby_curves, oby_red_p0, oby_green_p0, oby_blue_p0, oby_red_p1, oby_green_p1, oby_blue_p1, oby_red_p2, oby_green_p2, oby_blue_p2, oby_red_p3, oby_green_p3, oby_blue_p3, oby_red_p4, oby_green_p4, oby_blue_p4, oby_red_p5, oby_green_p5, oby_blue_p5, oby_red_p6, oby_green_p6, oby_blue_p6, oby_red_p7, oby_green_p7, oby_blue_p7, oby_red_p8, oby_green_p8, oby_blue_p8, oby_red_p9, oby_green_p9, oby_blue_p9, oby_red_p10, oby_green_p10, oby_blue_p10,
|
443 |
+
achro_curves, achro_red_p0, achro_green_p0, achro_blue_p0, achro_red_p1, achro_green_p1, achro_blue_p1, achro_red_p2, achro_green_p2, achro_blue_p2, achro_red_p3, achro_green_p3, achro_blue_p3, achro_red_p4, achro_green_p4, achro_blue_p4, achro_red_p5, achro_green_p5, achro_blue_p5, achro_red_p6, achro_green_p6, achro_blue_p6, achro_red_p7, achro_green_p7, achro_blue_p7, achro_red_p8, achro_green_p8, achro_blue_p8, achro_red_p9, achro_green_p9, achro_blue_p9, achro_red_p10, achro_green_p10, achro_blue_p10,
|
444 |
+
pink_purple_curves, pp_red_p0, pp_green_p0, pp_blue_p0, pp_red_p1, pp_green_p1, pp_blue_p1, pp_red_p2, pp_green_p2, pp_blue_p2, pp_red_p3, pp_green_p3, pp_blue_p3, pp_red_p4, pp_green_p4, pp_blue_p4, pp_red_p5, pp_green_p5, pp_blue_p5, pp_red_p6, pp_green_p6, pp_blue_p6, pp_red_p7, pp_green_p7, pp_blue_p7, pp_red_p8, pp_green_p8, pp_blue_p8, pp_red_p9, pp_green_p9, pp_blue_p9, pp_red_p10, pp_green_p10, pp_blue_p10,
|
445 |
+
red_curves, red_red_p0, red_green_p0, red_blue_p0, red_red_p1, red_green_p1, red_blue_p1, red_red_p2, red_green_p2, red_blue_p2, red_red_p3, red_green_p3, red_blue_p3, red_red_p4, red_green_p4, red_blue_p4, red_red_p5, red_green_p5, red_blue_p5, red_red_p6, red_green_p6, red_blue_p6, red_red_p7, red_green_p7, red_blue_p7, red_red_p8, red_green_p8, red_blue_p8, red_red_p9, red_green_p9, red_blue_p9, red_red_p10, red_green_p10, red_blue_p10,
|
446 |
+
green_curves, green_red_p0, green_green_p0, green_blue_p0, green_red_p1, green_green_p1, green_blue_p1, green_red_p2, green_green_p2, green_blue_p2, green_red_p3, green_green_p3, green_blue_p3, green_red_p4, green_green_p4, green_blue_p4, green_red_p5, green_green_p5, green_blue_p5, green_red_p6, green_green_p6, green_blue_p6, green_red_p7, green_green_p7, green_blue_p7, green_red_p8, green_green_p8, green_blue_p8, green_red_p9, green_green_p9, green_blue_p9, green_red_p10, green_green_p10, green_blue_p10,
|
447 |
+
blue_curves, blue_red_p0, blue_green_p0, blue_blue_p0, blue_red_p1, blue_green_p1, blue_blue_p1, blue_red_p2, blue_green_p2, blue_blue_p2, blue_red_p3, blue_green_p3, blue_blue_p3, blue_red_p4, blue_green_p4, blue_blue_p4, blue_red_p5, blue_green_p5, blue_blue_p5, blue_red_p6, blue_green_p6, blue_blue_p6, blue_red_p7, blue_green_p7, blue_blue_p7, blue_red_p8, blue_green_p8, blue_blue_p8, blue_red_p9, blue_green_p9, blue_blue_p9, blue_red_p10, blue_green_p10, blue_blue_p10,
|
448 |
+
out_image],
|
449 |
+
)
|
450 |
+
|
451 |
+
recompute_btn.click(
|
452 |
+
process_img_with_sliders,
|
453 |
+
inputs=[image,
|
454 |
+
oby_red_p0, oby_green_p0, oby_blue_p0, oby_red_p1, oby_green_p1, oby_blue_p1, oby_red_p2, oby_green_p2, oby_blue_p2, oby_red_p3, oby_green_p3, oby_blue_p3, oby_red_p4, oby_green_p4, oby_blue_p4, oby_red_p5, oby_green_p5, oby_blue_p5, oby_red_p6, oby_green_p6, oby_blue_p6, oby_red_p7, oby_green_p7, oby_blue_p7, oby_red_p8, oby_green_p8, oby_blue_p8, oby_red_p9, oby_green_p9, oby_blue_p9, oby_red_p10, oby_green_p10, oby_blue_p10,
|
455 |
+
achro_red_p0, achro_green_p0, achro_blue_p0, achro_red_p1, achro_green_p1, achro_blue_p1, achro_red_p2, achro_green_p2, achro_blue_p2, achro_red_p3, achro_green_p3, achro_blue_p3, achro_red_p4, achro_green_p4, achro_blue_p4, achro_red_p5, achro_green_p5, achro_blue_p5, achro_red_p6, achro_green_p6, achro_blue_p6, achro_red_p7, achro_green_p7, achro_blue_p7, achro_red_p8, achro_green_p8, achro_blue_p8, achro_red_p9, achro_green_p9, achro_blue_p9, achro_red_p10, achro_green_p10, achro_blue_p10,
|
456 |
+
pp_red_p0, pp_green_p0, pp_blue_p0, pp_red_p1, pp_green_p1, pp_blue_p1, pp_red_p2, pp_green_p2, pp_blue_p2, pp_red_p3, pp_green_p3, pp_blue_p3, pp_red_p4, pp_green_p4, pp_blue_p4, pp_red_p5, pp_green_p5, pp_blue_p5, pp_red_p6, pp_green_p6, pp_blue_p6, pp_red_p7, pp_green_p7, pp_blue_p7, pp_red_p8, pp_green_p8, pp_blue_p8, pp_red_p9, pp_green_p9, pp_blue_p9, pp_red_p10, pp_green_p10, pp_blue_p10,
|
457 |
+
red_red_p0, red_green_p0, red_blue_p0, red_red_p1, red_green_p1, red_blue_p1, red_red_p2, red_green_p2, red_blue_p2, red_red_p3, red_green_p3, red_blue_p3, red_red_p4, red_green_p4, red_blue_p4, red_red_p5, red_green_p5, red_blue_p5, red_red_p6, red_green_p6, red_blue_p6, red_red_p7, red_green_p7, red_blue_p7, red_red_p8, red_green_p8, red_blue_p8, red_red_p9, red_green_p9, red_blue_p9, red_red_p10, red_green_p10, red_blue_p10,
|
458 |
+
green_red_p0, green_green_p0, green_blue_p0, green_red_p1, green_green_p1, green_blue_p1, green_red_p2, green_green_p2, green_blue_p2, green_red_p3, green_green_p3, green_blue_p3, green_red_p4, green_green_p4, green_blue_p4, green_red_p5, green_green_p5, green_blue_p5, green_red_p6, green_green_p6, green_blue_p6, green_red_p7, green_green_p7, green_blue_p7, green_red_p8, green_green_p8, green_blue_p8, green_red_p9, green_green_p9, green_blue_p9, green_red_p10, green_green_p10, green_blue_p10,
|
459 |
+
blue_red_p0, blue_green_p0, blue_blue_p0, blue_red_p1, blue_green_p1, blue_blue_p1, blue_red_p2, blue_green_p2, blue_blue_p2, blue_red_p3, blue_green_p3, blue_blue_p3, blue_red_p4, blue_green_p4, blue_blue_p4, blue_red_p5, blue_green_p5, blue_blue_p5, blue_red_p6, blue_green_p6, blue_blue_p6, blue_red_p7, blue_green_p7, blue_blue_p7, blue_red_p8, blue_green_p8, blue_blue_p8, blue_red_p9, blue_green_p9, blue_blue_p9, blue_red_p10, blue_green_p10, blue_blue_p10],
|
460 |
+
outputs=[oby_curves, oby_red_p0, oby_green_p0, oby_blue_p0, oby_red_p1, oby_green_p1, oby_blue_p1, oby_red_p2, oby_green_p2, oby_blue_p2, oby_red_p3, oby_green_p3, oby_blue_p3, oby_red_p4, oby_green_p4, oby_blue_p4, oby_red_p5, oby_green_p5, oby_blue_p5, oby_red_p6, oby_green_p6, oby_blue_p6, oby_red_p7, oby_green_p7, oby_blue_p7, oby_red_p8, oby_green_p8, oby_blue_p8, oby_red_p9, oby_green_p9, oby_blue_p9, oby_red_p10, oby_green_p10, oby_blue_p10,
|
461 |
+
achro_curves, achro_red_p0, achro_green_p0, achro_blue_p0, achro_red_p1, achro_green_p1, achro_blue_p1, achro_red_p2, achro_green_p2, achro_blue_p2, achro_red_p3, achro_green_p3, achro_blue_p3, achro_red_p4, achro_green_p4, achro_blue_p4, achro_red_p5, achro_green_p5, achro_blue_p5, achro_red_p6, achro_green_p6, achro_blue_p6, achro_red_p7, achro_green_p7, achro_blue_p7, achro_red_p8, achro_green_p8, achro_blue_p8, achro_red_p9, achro_green_p9, achro_blue_p9, achro_red_p10, achro_green_p10, achro_blue_p10,
|
462 |
+
pink_purple_curves, pp_red_p0, pp_green_p0, pp_blue_p0, pp_red_p1, pp_green_p1, pp_blue_p1, pp_red_p2, pp_green_p2, pp_blue_p2, pp_red_p3, pp_green_p3, pp_blue_p3, pp_red_p4, pp_green_p4, pp_blue_p4, pp_red_p5, pp_green_p5, pp_blue_p5, pp_red_p6, pp_green_p6, pp_blue_p6, pp_red_p7, pp_green_p7, pp_blue_p7, pp_red_p8, pp_green_p8, pp_blue_p8, pp_red_p9, pp_green_p9, pp_blue_p9, pp_red_p10, pp_green_p10, pp_blue_p10,
|
463 |
+
red_curves, red_red_p0, red_green_p0, red_blue_p0, red_red_p1, red_green_p1, red_blue_p1, red_red_p2, red_green_p2, red_blue_p2, red_red_p3, red_green_p3, red_blue_p3, red_red_p4, red_green_p4, red_blue_p4, red_red_p5, red_green_p5, red_blue_p5, red_red_p6, red_green_p6, red_blue_p6, red_red_p7, red_green_p7, red_blue_p7, red_red_p8, red_green_p8, red_blue_p8, red_red_p9, red_green_p9, red_blue_p9, red_red_p10, red_green_p10, red_blue_p10,
|
464 |
+
green_curves, green_red_p0, green_green_p0, green_blue_p0, green_red_p1, green_green_p1, green_blue_p1, green_red_p2, green_green_p2, green_blue_p2, green_red_p3, green_green_p3, green_blue_p3, green_red_p4, green_green_p4, green_blue_p4, green_red_p5, green_green_p5, green_blue_p5, green_red_p6, green_green_p6, green_blue_p6, green_red_p7, green_green_p7, green_blue_p7, green_red_p8, green_green_p8, green_blue_p8, green_red_p9, green_green_p9, green_blue_p9, green_red_p10, green_green_p10, green_blue_p10,
|
465 |
+
blue_curves, blue_red_p0, blue_green_p0, blue_blue_p0, blue_red_p1, blue_green_p1, blue_blue_p1, blue_red_p2, blue_green_p2, blue_blue_p2, blue_red_p3, blue_green_p3, blue_blue_p3, blue_red_p4, blue_green_p4, blue_blue_p4, blue_red_p5, blue_green_p5, blue_blue_p5, blue_red_p6, blue_green_p6, blue_blue_p6, blue_red_p7, blue_green_p7, blue_blue_p7, blue_red_p8, blue_green_p8, blue_blue_p8, blue_red_p9, blue_green_p9, blue_blue_p9, blue_red_p10, blue_green_p10, blue_blue_p10,
|
466 |
+
out_image],
|
467 |
+
)
|
468 |
+
|
469 |
+
if __name__ == "__main__":
|
470 |
+
demo.launch()
|
assets/a4957-expertc.png
ADDED
assets/a4957-input.png
ADDED
assets/a4982-input.png
ADDED
assets/a4984-input.png
ADDED
assets/a4985-input.png
ADDED
assets/a4986-input.png
ADDED
assets/a4988-input.png
ADDED
assets/a4990-input.png
ADDED
assets/a4993-input.png
ADDED
assets/a4994-input.png
ADDED
assets/a4996-input.png
ADDED
assets/a4998-input.png
ADDED
assets/a5000-input.png
ADDED
assets/architecture-overview.png
ADDED
assets/thumbnail.png
ADDED
configs/mit5k_dpe_config.yaml
ADDED
@@ -0,0 +1,96 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
model:
|
2 |
+
ckpt_path: ~
|
3 |
+
backbone:
|
4 |
+
params:
|
5 |
+
input_channels: 3
|
6 |
+
output_channels: 3
|
7 |
+
encoder_dims: [4, 8, 16]
|
8 |
+
decoder_dims: [8, 4]
|
9 |
+
color_naming:
|
10 |
+
num_categories: 6
|
11 |
+
bezier_control_points_estimator:
|
12 |
+
params:
|
13 |
+
num_categories: ${model.color_naming.num_categories}
|
14 |
+
num_control_points: 10
|
15 |
+
local_fusion:
|
16 |
+
params:
|
17 |
+
att_in_dim: 3
|
18 |
+
num_categories: ${model.color_naming.num_categories}
|
19 |
+
max_pool_ksize1: 4
|
20 |
+
max_pool_ksize2: 2
|
21 |
+
encoder_dims: [8, 16]
|
22 |
+
|
23 |
+
data:
|
24 |
+
train:
|
25 |
+
target: mit5k
|
26 |
+
params:
|
27 |
+
input_path: /home/dserrano/Documents/datasets/FiveK-UEGAN/input
|
28 |
+
target_path: /home/dserrano/Documents/datasets/FiveK-UEGAN/expertC_gt
|
29 |
+
img_ids_filepath: mit5k_ids_filepath/dpe/images_train.txt
|
30 |
+
transform:
|
31 |
+
- type: RandomCrop
|
32 |
+
params:
|
33 |
+
size: [ 256, 256 ]
|
34 |
+
- type: Resize
|
35 |
+
params:
|
36 |
+
size: 256
|
37 |
+
- type: RandomHorizontalFlip
|
38 |
+
params:
|
39 |
+
p: 0.5
|
40 |
+
- type: RandomVerticalFlip
|
41 |
+
params:
|
42 |
+
p: 0.5
|
43 |
+
valid:
|
44 |
+
target: mit5k
|
45 |
+
params:
|
46 |
+
input_path: /home/dserrano/Documents/datasets/FiveK-UEGAN/input
|
47 |
+
target_path: /home/dserrano/Documents/datasets/FiveK-UEGAN/expertC_gt
|
48 |
+
img_ids_filepath: mit5k_ids_filepath/dpe/images_test.txt
|
49 |
+
|
50 |
+
test:
|
51 |
+
target: mit5k
|
52 |
+
params:
|
53 |
+
input_path: /home/dserrano/Documents/datasets/FiveK-UEGAN/input
|
54 |
+
target_path: /home/dserrano/Documents/datasets/FiveK-UEGAN/expertC_gt
|
55 |
+
img_ids_filepath: mit5k_ids_filepath/dpe/images_test.txt
|
56 |
+
|
57 |
+
train:
|
58 |
+
cuda_visible_device: 0
|
59 |
+
batch_size: 8
|
60 |
+
epochs: 100
|
61 |
+
valid_every: 1
|
62 |
+
optimizer:
|
63 |
+
type: Adam
|
64 |
+
params:
|
65 |
+
lr: 1e-4
|
66 |
+
betas: [ 0.9, 0.999 ]
|
67 |
+
eps: 1e-8
|
68 |
+
criterion:
|
69 |
+
type: backbone-L2-SSIM
|
70 |
+
params:
|
71 |
+
alpha: 0.5
|
72 |
+
ssim_window_size: 5
|
73 |
+
eval:
|
74 |
+
metrics:
|
75 |
+
- type: PSNR
|
76 |
+
params:
|
77 |
+
data_range: 1.0
|
78 |
+
- type: SSIM
|
79 |
+
params:
|
80 |
+
kernel_size: 11
|
81 |
+
- type: LPIPS
|
82 |
+
params:
|
83 |
+
net: vgg
|
84 |
+
version: 0.1
|
85 |
+
- type: deltaE00
|
86 |
+
- type: deltaEab
|
87 |
+
metric_to_save: PSNR
|
88 |
+
|
89 |
+
|
90 |
+
|
91 |
+
|
92 |
+
|
93 |
+
|
94 |
+
|
95 |
+
|
96 |
+
|
configs/mit5k_upe_config.yaml
ADDED
@@ -0,0 +1,90 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
model:
|
2 |
+
ckpt_path: ~
|
3 |
+
backbone:
|
4 |
+
params:
|
5 |
+
input_channels: 3
|
6 |
+
output_channels: 3
|
7 |
+
encoder_dims: [4, 8, 16]
|
8 |
+
decoder_dims: [8, 4]
|
9 |
+
color_naming:
|
10 |
+
num_categories: 6
|
11 |
+
bezier_control_points_estimator:
|
12 |
+
params:
|
13 |
+
num_categories: ${model.color_naming.num_categories}
|
14 |
+
num_control_points: 10
|
15 |
+
local_fusion:
|
16 |
+
params:
|
17 |
+
att_in_dim: 3
|
18 |
+
num_categories: ${model.color_naming.num_categories}
|
19 |
+
max_pool_ksize1: 4
|
20 |
+
max_pool_ksize2: 2
|
21 |
+
encoder_dims: [8, 16]
|
22 |
+
|
23 |
+
data:
|
24 |
+
train:
|
25 |
+
target: mit5k
|
26 |
+
params:
|
27 |
+
input_path: /home/dserrano/Documents/datasets/FiveK-UEGAN/input
|
28 |
+
target_path: /home/dserrano/Documents/datasets/FiveK-UEGAN/expertC_gt
|
29 |
+
img_ids_filepath: /home/dserrano/Workspace/DeepLPF/adobe5k_upe/images_train.txt
|
30 |
+
transform:
|
31 |
+
- type: RandomCrop
|
32 |
+
params:
|
33 |
+
size: [ 256, 256 ]
|
34 |
+
- type: Resize
|
35 |
+
params:
|
36 |
+
size: 256
|
37 |
+
- type: RandomHorizontalFlip
|
38 |
+
params:
|
39 |
+
p: 0.5
|
40 |
+
- type: RandomVerticalFlip
|
41 |
+
params:
|
42 |
+
p: 0.5
|
43 |
+
|
44 |
+
test:
|
45 |
+
target: mit5k
|
46 |
+
params:
|
47 |
+
input_path: /home/dserrano/Documents/datasets/FiveK-UEGAN/input
|
48 |
+
target_path: /home/dserrano/Documents/datasets/FiveK-UEGAN/expertC_gt
|
49 |
+
img_ids_filepath: /home/dserrano/Workspace/DeepLPF/adobe5k_upe/images_train.txt
|
50 |
+
|
51 |
+
train:
|
52 |
+
cuda_visible_device: 0
|
53 |
+
batch_size: 8
|
54 |
+
epochs: 100
|
55 |
+
valid_every: 1
|
56 |
+
optimizer:
|
57 |
+
type: Adam
|
58 |
+
params:
|
59 |
+
lr: 1e-4
|
60 |
+
betas: [ 0.9, 0.999 ]
|
61 |
+
eps: 1e-8
|
62 |
+
criterion:
|
63 |
+
type: backbone-L2-SSIM
|
64 |
+
params:
|
65 |
+
alpha: 0.5
|
66 |
+
ssim_window_size: 5
|
67 |
+
eval:
|
68 |
+
metrics:
|
69 |
+
- type: PSNR
|
70 |
+
params:
|
71 |
+
data_range: 1.0
|
72 |
+
- type: SSIM
|
73 |
+
params:
|
74 |
+
kernel_size: 11
|
75 |
+
- type: LPIPS
|
76 |
+
params:
|
77 |
+
net: vgg
|
78 |
+
version: 0.1
|
79 |
+
- type: deltaE00
|
80 |
+
- type: deltaEab
|
81 |
+
metric_to_save: PSNR
|
82 |
+
|
83 |
+
|
84 |
+
|
85 |
+
|
86 |
+
|
87 |
+
|
88 |
+
|
89 |
+
|
90 |
+
|
data/datasets.py
ADDED
@@ -0,0 +1,109 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import logging
|
3 |
+
import numpy as np
|
4 |
+
from glob import glob
|
5 |
+
from PIL import Image
|
6 |
+
from torch.utils.data import Dataset
|
7 |
+
from torchvision import transforms
|
8 |
+
from torchvision.transforms import functional as TF
|
9 |
+
from torchvision.transforms.functional import to_tensor
|
10 |
+
from data.image_transformations import get_transforms
|
11 |
+
|
12 |
+
class MIT5KDataset(Dataset):
|
13 |
+
def __init__(self, input_path, target_path, img_ids_filepath, transform=None):
|
14 |
+
self.input_path = input_path
|
15 |
+
self.target_path = target_path
|
16 |
+
self.transform = transform
|
17 |
+
self.img_ids = self._read_img_ids(img_ids_filepath)
|
18 |
+
self.data = self._create_data_list()
|
19 |
+
if transform is not None:
|
20 |
+
self.image_transforms = get_transforms(transform)
|
21 |
+
else:
|
22 |
+
self.image_transforms = None
|
23 |
+
|
24 |
+
def _read_img_ids(self, img_ids_filepath):
|
25 |
+
# Read the image IDs from the txt file
|
26 |
+
with open(img_ids_filepath, 'r') as f:
|
27 |
+
img_ids = [line.strip() for line in f.readlines()]
|
28 |
+
return img_ids
|
29 |
+
|
30 |
+
def _create_data_list(self):
|
31 |
+
# Create a list of dictionaries with 'input_path', 'target_path' and 'name'
|
32 |
+
data_list = []
|
33 |
+
for input_file in glob(os.path.join(self.input_path, "*")):
|
34 |
+
img_id = os.path.basename(input_file).split('-')[0]
|
35 |
+
if img_id in self.img_ids:
|
36 |
+
target_file = os.path.join(self.target_path, os.path.basename(os.path.basename(input_file)))
|
37 |
+
if not os.path.exists(target_file):
|
38 |
+
raise FileNotFoundError(f"Target file {target_file} not found. While input file {input_file} was found.")
|
39 |
+
data_list.append({'input_path': input_file, 'target_path': target_file, 'name': img_id})
|
40 |
+
|
41 |
+
return data_list
|
42 |
+
|
43 |
+
def __len__(self):
|
44 |
+
return len(self.data)
|
45 |
+
|
46 |
+
def __getitem__(self, idx):
|
47 |
+
data = self.data[idx]
|
48 |
+
input_image, target_image = self._load_image_pair(data['input_path'], data['target_path'])
|
49 |
+
|
50 |
+
return {'input_image': input_image, 'target_image': target_image, 'name':data['name']}
|
51 |
+
|
52 |
+
def _load_image_pair(self, img1_path, img2_path):
|
53 |
+
img1_tensor = to_tensor(np.array(Image.open(img1_path).convert('RGB')))
|
54 |
+
img2_tensor = to_tensor(np.array(Image.open(img2_path).convert('RGB')))
|
55 |
+
|
56 |
+
if self.image_transforms is not None:
|
57 |
+
for image_transform in self.image_transforms:
|
58 |
+
img1_tensor, img2_tensor = image_transform(img1_tensor, img2_tensor)
|
59 |
+
|
60 |
+
return img1_tensor, img2_tensor
|
61 |
+
|
62 |
+
#class PPR10KDataset(Dataset):
|
63 |
+
|
64 |
+
|
65 |
+
def get_single_dataset(type, params):
|
66 |
+
if type == 'mit5k':
|
67 |
+
return MIT5KDataset(**params)
|
68 |
+
elif type == 'ppr10k':
|
69 |
+
# TODO:
|
70 |
+
return PPR10KDataset(**params)
|
71 |
+
else:
|
72 |
+
raise ValueError(f"Unsupported dataset type: {type}")
|
73 |
+
|
74 |
+
|
75 |
+
def get_datasets(config):
|
76 |
+
"""Returns the datsaets based on the configuration file."""
|
77 |
+
|
78 |
+
if len(config) == 2:
|
79 |
+
train_dataset = get_single_dataset(config.train.target, config.train.params)
|
80 |
+
test_dataset = get_single_dataset(config.test.target, config.test.params)
|
81 |
+
return train_dataset, None, test_dataset
|
82 |
+
|
83 |
+
elif len(config) == 3:
|
84 |
+
train_dataset = get_single_dataset(config.train.target, config.train.params)
|
85 |
+
val_dataset = get_single_dataset(config.valid.target, config.valid.params)
|
86 |
+
test_dataset = get_single_dataset(config.test.target, config.test.params)
|
87 |
+
return train_dataset, val_dataset, test_dataset
|
88 |
+
|
89 |
+
else:
|
90 |
+
raise ValueError("The number of datasets should be 2 (train/test) or 3 (train/valid/test).")
|
91 |
+
|
92 |
+
if __name__ == "__main__":
|
93 |
+
from omegaconf import OmegaConf
|
94 |
+
config = OmegaConf.load("../configs/mit5k_upe_config.yaml")
|
95 |
+
|
96 |
+
dataset = MIT5KDataset(**config.data.train.params)
|
97 |
+
input_img, target_img, name = dataset[0]
|
98 |
+
|
99 |
+
import matplotlib.pyplot as plt
|
100 |
+
plt.subplot(1, 2, 1)
|
101 |
+
plt.imshow(input_img.squeeze().permute(1, 2, 0).numpy())
|
102 |
+
plt.title("Input Image")
|
103 |
+
plt.subplot(1, 2, 2)
|
104 |
+
plt.imshow(target_img.squeeze().permute(1, 2, 0).numpy())
|
105 |
+
plt.title("Target Image")
|
106 |
+
plt.show()
|
107 |
+
|
108 |
+
|
109 |
+
|
data/image_transformations.py
ADDED
@@ -0,0 +1,61 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import random
|
2 |
+
import torchvision.transforms.functional as F
|
3 |
+
from torchvision import transforms
|
4 |
+
|
5 |
+
class RandomCropPair:
|
6 |
+
def __init__(self, size):
|
7 |
+
self.size = size
|
8 |
+
|
9 |
+
def __call__(self, img1, img2):
|
10 |
+
i, j, h, w = transforms.RandomCrop.get_params(img1, self.size)
|
11 |
+
img1 = F.crop(img1, i, j, h, w)
|
12 |
+
img2 = F.crop(img2, i, j, h, w)
|
13 |
+
return img1, img2
|
14 |
+
|
15 |
+
class ResizePair:
|
16 |
+
def __init__(self, size):
|
17 |
+
self.size = size
|
18 |
+
|
19 |
+
def __call__(self, img1, img2):
|
20 |
+
# antialias=True is used to avoid torchvision warning
|
21 |
+
img1 = F.resize(img1, self.size, antialias=True)
|
22 |
+
img2 = F.resize(img2, self.size, antialias=True)
|
23 |
+
return img1, img2
|
24 |
+
|
25 |
+
class RandomHorizontalFlipPair:
|
26 |
+
def __init__(self, p=0.5):
|
27 |
+
self.p = p
|
28 |
+
|
29 |
+
def __call__(self, img1, img2):
|
30 |
+
if random.random() < self.p:
|
31 |
+
img1 = F.hflip(img1)
|
32 |
+
img2 = F.hflip(img2)
|
33 |
+
return img1, img2
|
34 |
+
|
35 |
+
class RandomVerticalFlipPair:
|
36 |
+
def __init__(self, p=0.5):
|
37 |
+
self.p = p
|
38 |
+
|
39 |
+
def __call__(self, img1, img2):
|
40 |
+
if random.random() < self.p:
|
41 |
+
img1 = F.vflip(img1)
|
42 |
+
img2 = F.vflip(img2)
|
43 |
+
return img1, img2
|
44 |
+
|
45 |
+
def get_transforms(transforms_config):
|
46 |
+
transform_list = []
|
47 |
+
for transform in transforms_config:
|
48 |
+
transform_type = transform['type']
|
49 |
+
params = transform['params']
|
50 |
+
if transform_type == 'RandomCrop':
|
51 |
+
transform_list.append(RandomCropPair(**params))
|
52 |
+
elif transform_type == 'Resize':
|
53 |
+
transform_list.append(ResizePair(**params))
|
54 |
+
elif transform_type == 'RandomHorizontalFlip':
|
55 |
+
transform_list.append(RandomHorizontalFlipPair(**params))
|
56 |
+
elif transform_type == 'RandomVerticalFlip':
|
57 |
+
transform_list.append(RandomVerticalFlipPair(**params))
|
58 |
+
else:
|
59 |
+
raise ValueError(f"Unsupported transform type: {transform_type}")
|
60 |
+
|
61 |
+
return transform_list
|
mit5k_ids_filepath/dpe/images_test.txt
ADDED
@@ -0,0 +1,50 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
a4501
|
2 |
+
a4502
|
3 |
+
a4503
|
4 |
+
a4504
|
5 |
+
a4505
|
6 |
+
a4506
|
7 |
+
a4507
|
8 |
+
a4508
|
9 |
+
a4509
|
10 |
+
a4510
|
11 |
+
a4511
|
12 |
+
a4512
|
13 |
+
a4513
|
14 |
+
a4514
|
15 |
+
a4515
|
16 |
+
a4516
|
17 |
+
a4517
|
18 |
+
a4518
|
19 |
+
a4519
|
20 |
+
a4520
|
21 |
+
a4521
|
22 |
+
a4522
|
23 |
+
a4523
|
24 |
+
a4524
|
25 |
+
a4525
|
26 |
+
a4526
|
27 |
+
a4527
|
28 |
+
a4528
|
29 |
+
a4529
|
30 |
+
a4530
|
31 |
+
a4531
|
32 |
+
a4532
|
33 |
+
a4533
|
34 |
+
a4534
|
35 |
+
a4535
|
36 |
+
a4536
|
37 |
+
a4537
|
38 |
+
a4538
|
39 |
+
a4539
|
40 |
+
a4540
|
41 |
+
a4541
|
42 |
+
a4542
|
43 |
+
a4543
|
44 |
+
a4544
|
45 |
+
a4545
|
46 |
+
a4546
|
47 |
+
a4547
|
48 |
+
a4548
|
49 |
+
a4549
|
50 |
+
a4550
|
mit5k_ids_filepath/dpe/images_train.txt
ADDED
@@ -0,0 +1,62 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
a0001
|
2 |
+
a0002
|
3 |
+
a0003
|
4 |
+
a0004
|
5 |
+
a0005
|
6 |
+
a0006
|
7 |
+
a0007
|
8 |
+
a0008
|
9 |
+
a0009
|
10 |
+
a0010
|
11 |
+
a0011
|
12 |
+
a0012
|
13 |
+
a0013
|
14 |
+
a0014
|
15 |
+
a0015
|
16 |
+
a0016
|
17 |
+
a0017
|
18 |
+
a0018
|
19 |
+
a0019
|
20 |
+
a0020
|
21 |
+
a0021
|
22 |
+
a0022
|
23 |
+
a0023
|
24 |
+
a0024
|
25 |
+
a0025
|
26 |
+
a0026
|
27 |
+
a0027
|
28 |
+
a0028
|
29 |
+
a0029
|
30 |
+
a0030
|
31 |
+
a0031
|
32 |
+
a0032
|
33 |
+
a0033
|
34 |
+
a0034
|
35 |
+
a0035
|
36 |
+
a0036
|
37 |
+
a0037
|
38 |
+
a0038
|
39 |
+
a0039
|
40 |
+
a0040
|
41 |
+
a0041
|
42 |
+
a0042
|
43 |
+
a0043
|
44 |
+
a0044
|
45 |
+
a0045
|
46 |
+
a0046
|
47 |
+
a0047
|
48 |
+
a0048
|
49 |
+
a0049
|
50 |
+
a0050
|
51 |
+
a0051
|
52 |
+
a0052
|
53 |
+
a0053
|
54 |
+
a0054
|
55 |
+
a0055
|
56 |
+
a0056
|
57 |
+
a0057
|
58 |
+
a0058
|
59 |
+
a0059
|
60 |
+
a0060
|
61 |
+
a0061
|
62 |
+
a0062
|
mit5k_ids_filepath/dpe/images_valid.txt
ADDED
@@ -0,0 +1,2250 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
a2251
|
2 |
+
a2252
|
3 |
+
a2253
|
4 |
+
a2254
|
5 |
+
a2255
|
6 |
+
a2256
|
7 |
+
a2257
|
8 |
+
a2258
|
9 |
+
a2259
|
10 |
+
a2260
|
11 |
+
a2261
|
12 |
+
a2262
|
13 |
+
a2263
|
14 |
+
a2264
|
15 |
+
a2265
|
16 |
+
a2266
|
17 |
+
a2267
|
18 |
+
a2268
|
19 |
+
a2269
|
20 |
+
a2270
|
21 |
+
a2271
|
22 |
+
a2272
|
23 |
+
a2273
|
24 |
+
a2274
|
25 |
+
a2275
|
26 |
+
a2276
|
27 |
+
a2277
|
28 |
+
a2278
|
29 |
+
a2279
|
30 |
+
a2280
|
31 |
+
a2281
|
32 |
+
a2282
|
33 |
+
a2283
|
34 |
+
a2284
|
35 |
+
a2285
|
36 |
+
a2286
|
37 |
+
a2287
|
38 |
+
a2288
|
39 |
+
a2289
|
40 |
+
a2290
|
41 |
+
a2291
|
42 |
+
a2292
|
43 |
+
a2293
|
44 |
+
a2294
|
45 |
+
a2295
|
46 |
+
a2296
|
47 |
+
a2297
|
48 |
+
a2298
|
49 |
+
a2299
|
50 |
+
a2300
|
51 |
+
a2301
|
52 |
+
a2302
|
53 |
+
a2303
|
54 |
+
a2304
|
55 |
+
a2305
|
56 |
+
a2306
|
57 |
+
a2307
|
58 |
+
a2308
|
59 |
+
a2309
|
60 |
+
a2310
|
61 |
+
a2311
|
62 |
+
a2312
|
63 |
+
a2313
|
64 |
+
a2314
|
65 |
+
a2315
|
66 |
+
a2316
|
67 |
+
a2317
|
68 |
+
a2318
|
69 |
+
a2319
|
70 |
+
a2320
|
71 |
+
a2321
|
72 |
+
a2322
|
73 |
+
a2323
|
74 |
+
a2324
|
75 |
+
a2325
|
76 |
+
a2326
|
77 |
+
a2327
|
78 |
+
a2328
|
79 |
+
a2329
|
80 |
+
a2330
|
81 |
+
a2331
|
82 |
+
a2332
|
83 |
+
a2333
|
84 |
+
a2334
|
85 |
+
a2335
|
86 |
+
a2336
|
87 |
+
a2337
|
88 |
+
a2338
|
89 |
+
a2339
|
90 |
+
a2340
|
91 |
+
a2341
|
92 |
+
a2342
|
93 |
+
a2343
|
94 |
+
a2344
|
95 |
+
a2345
|
96 |
+
a2346
|
97 |
+
a2347
|
98 |
+
a2348
|
99 |
+
a2349
|
100 |
+
a2350
|
101 |
+
a2351
|
102 |
+
a2352
|
103 |
+
a2353
|
104 |
+
a2354
|
105 |
+
a2355
|
106 |
+
a2356
|
107 |
+
a2357
|
108 |
+
a2358
|
109 |
+
a2359
|
110 |
+
a2360
|
111 |
+
a2361
|
112 |
+
a2362
|
113 |
+
a2363
|
114 |
+
a2364
|
115 |
+
a2365
|
116 |
+
a2366
|
117 |
+
a2367
|
118 |
+
a2368
|
119 |
+
a2369
|
120 |
+
a2370
|
121 |
+
a2371
|
122 |
+
a2372
|
123 |
+
a2373
|
124 |
+
a2374
|
125 |
+
a2375
|
126 |
+
a2376
|
127 |
+
a2377
|
128 |
+
a2378
|
129 |
+
a2379
|
130 |
+
a2380
|
131 |
+
a2381
|
132 |
+
a2382
|
133 |
+
a2383
|
134 |
+
a2384
|
135 |
+
a2385
|
136 |
+
a2386
|
137 |
+
a2387
|
138 |
+
a2388
|
139 |
+
a2389
|
140 |
+
a2390
|
141 |
+
a2391
|
142 |
+
a2392
|
143 |
+
a2393
|
144 |
+
a2394
|
145 |
+
a2395
|
146 |
+
a2396
|
147 |
+
a2397
|
148 |
+
a2398
|
149 |
+
a2399
|
150 |
+
a2400
|
151 |
+
a2401
|
152 |
+
a2402
|
153 |
+
a2403
|
154 |
+
a2404
|
155 |
+
a2405
|
156 |
+
a2406
|
157 |
+
a2407
|
158 |
+
a2408
|
159 |
+
a2409
|
160 |
+
a2410
|
161 |
+
a2411
|
162 |
+
a2412
|
163 |
+
a2413
|
164 |
+
a2414
|
165 |
+
a2415
|
166 |
+
a2416
|
167 |
+
a2417
|
168 |
+
a2418
|
169 |
+
a2419
|
170 |
+
a2420
|
171 |
+
a2421
|
172 |
+
a2422
|
173 |
+
a2423
|
174 |
+
a2424
|
175 |
+
a2425
|
176 |
+
a2426
|
177 |
+
a2427
|
178 |
+
a2428
|
179 |
+
a2429
|
180 |
+
a2430
|
181 |
+
a2431
|
182 |
+
a2432
|
183 |
+
a2433
|
184 |
+
a2434
|
185 |
+
a2435
|
186 |
+
a2436
|
187 |
+
a2437
|
188 |
+
a2438
|
189 |
+
a2439
|
190 |
+
a2440
|
191 |
+
a2441
|
192 |
+
a2442
|
193 |
+
a2443
|
194 |
+
a2444
|
195 |
+
a2445
|
196 |
+
a2446
|
197 |
+
a2447
|
198 |
+
a2448
|
199 |
+
a2449
|
200 |
+
a2450
|
201 |
+
a2451
|
202 |
+
a2452
|
203 |
+
a2453
|
204 |
+
a2454
|
205 |
+
a2455
|
206 |
+
a2456
|
207 |
+
a2457
|
208 |
+
a2458
|
209 |
+
a2459
|
210 |
+
a2460
|
211 |
+
a2461
|
212 |
+
a2462
|
213 |
+
a2463
|
214 |
+
a2464
|
215 |
+
a2465
|
216 |
+
a2466
|
217 |
+
a2467
|
218 |
+
a2468
|
219 |
+
a2469
|
220 |
+
a2470
|
221 |
+
a2471
|
222 |
+
a2472
|
223 |
+
a2473
|
224 |
+
a2474
|
225 |
+
a2475
|
226 |
+
a2476
|
227 |
+
a2477
|
228 |
+
a2478
|
229 |
+
a2479
|
230 |
+
a2480
|
231 |
+
a2481
|
232 |
+
a2482
|
233 |
+
a2483
|
234 |
+
a2484
|
235 |
+
a2485
|
236 |
+
a2486
|
237 |
+
a2487
|
238 |
+
a2488
|
239 |
+
a2489
|
240 |
+
a2490
|
241 |
+
a2491
|
242 |
+
a2492
|
243 |
+
a2493
|
244 |
+
a2494
|
245 |
+
a2495
|
246 |
+
a2496
|
247 |
+
a2497
|
248 |
+
a2498
|
249 |
+
a2499
|
250 |
+
a2500
|
251 |
+
a2501
|
252 |
+
a2502
|
253 |
+
a2503
|
254 |
+
a2504
|
255 |
+
a2505
|
256 |
+
a2506
|
257 |
+
a2507
|
258 |
+
a2508
|
259 |
+
a2509
|
260 |
+
a2510
|
261 |
+
a2511
|
262 |
+
a2512
|
263 |
+
a2513
|
264 |
+
a2514
|
265 |
+
a2515
|
266 |
+
a2516
|
267 |
+
a2517
|
268 |
+
a2518
|
269 |
+
a2519
|
270 |
+
a2520
|
271 |
+
a2521
|
272 |
+
a2522
|
273 |
+
a2523
|
274 |
+
a2524
|
275 |
+
a2525
|
276 |
+
a2526
|
277 |
+
a2527
|
278 |
+
a2528
|
279 |
+
a2529
|
280 |
+
a2530
|
281 |
+
a2531
|
282 |
+
a2532
|
283 |
+
a2533
|
284 |
+
a2534
|
285 |
+
a2535
|
286 |
+
a2536
|
287 |
+
a2537
|
288 |
+
a2538
|
289 |
+
a2539
|
290 |
+
a2540
|
291 |
+
a2541
|
292 |
+
a2542
|
293 |
+
a2543
|
294 |
+
a2544
|
295 |
+
a2545
|
296 |
+
a2546
|
297 |
+
a2547
|
298 |
+
a2548
|
299 |
+
a2549
|
300 |
+
a2550
|
301 |
+
a2551
|
302 |
+
a2552
|
303 |
+
a2553
|
304 |
+
a2554
|
305 |
+
a2555
|
306 |
+
a2556
|
307 |
+
a2557
|
308 |
+
a2558
|
309 |
+
a2559
|
310 |
+
a2560
|
311 |
+
a2561
|
312 |
+
a2562
|
313 |
+
a2563
|
314 |
+
a2564
|
315 |
+
a2565
|
316 |
+
a2566
|
317 |
+
a2567
|
318 |
+
a2568
|
319 |
+
a2569
|
320 |
+
a2570
|
321 |
+
a2571
|
322 |
+
a2572
|
323 |
+
a2573
|
324 |
+
a2574
|
325 |
+
a2575
|
326 |
+
a2576
|
327 |
+
a2577
|
328 |
+
a2578
|
329 |
+
a2579
|
330 |
+
a2580
|
331 |
+
a2581
|
332 |
+
a2582
|
333 |
+
a2583
|
334 |
+
a2584
|
335 |
+
a2585
|
336 |
+
a2586
|
337 |
+
a2587
|
338 |
+
a2588
|
339 |
+
a2589
|
340 |
+
a2590
|
341 |
+
a2591
|
342 |
+
a2592
|
343 |
+
a2593
|
344 |
+
a2594
|
345 |
+
a2595
|
346 |
+
a2596
|
347 |
+
a2597
|
348 |
+
a2598
|
349 |
+
a2599
|
350 |
+
a2600
|
351 |
+
a2601
|
352 |
+
a2602
|
353 |
+
a2603
|
354 |
+
a2604
|
355 |
+
a2605
|
356 |
+
a2606
|
357 |
+
a2607
|
358 |
+
a2608
|
359 |
+
a2609
|
360 |
+
a2610
|
361 |
+
a2611
|
362 |
+
a2612
|
363 |
+
a2613
|
364 |
+
a2614
|
365 |
+
a2615
|
366 |
+
a2616
|
367 |
+
a2617
|
368 |
+
a2618
|
369 |
+
a2619
|
370 |
+
a2620
|
371 |
+
a2621
|
372 |
+
a2622
|
373 |
+
a2623
|
374 |
+
a2624
|
375 |
+
a2625
|
376 |
+
a2626
|
377 |
+
a2627
|
378 |
+
a2628
|
379 |
+
a2629
|
380 |
+
a2630
|
381 |
+
a2631
|
382 |
+
a2632
|
383 |
+
a2633
|
384 |
+
a2634
|
385 |
+
a2635
|
386 |
+
a2636
|
387 |
+
a2637
|
388 |
+
a2638
|
389 |
+
a2639
|
390 |
+
a2640
|
391 |
+
a2641
|
392 |
+
a2642
|
393 |
+
a2643
|
394 |
+
a2644
|
395 |
+
a2645
|
396 |
+
a2646
|
397 |
+
a2647
|
398 |
+
a2648
|
399 |
+
a2649
|
400 |
+
a2650
|
401 |
+
a2651
|
402 |
+
a2652
|
403 |
+
a2653
|
404 |
+
a2654
|
405 |
+
a2655
|
406 |
+
a2656
|
407 |
+
a2657
|
408 |
+
a2658
|
409 |
+
a2659
|
410 |
+
a2660
|
411 |
+
a2661
|
412 |
+
a2662
|
413 |
+
a2663
|
414 |
+
a2664
|
415 |
+
a2665
|
416 |
+
a2666
|
417 |
+
a2667
|
418 |
+
a2668
|
419 |
+
a2669
|
420 |
+
a2670
|
421 |
+
a2671
|
422 |
+
a2672
|
423 |
+
a2673
|
424 |
+
a2674
|
425 |
+
a2675
|
426 |
+
a2676
|
427 |
+
a2677
|
428 |
+
a2678
|
429 |
+
a2679
|
430 |
+
a2680
|
431 |
+
a2681
|
432 |
+
a2682
|
433 |
+
a2683
|
434 |
+
a2684
|
435 |
+
a2685
|
436 |
+
a2686
|
437 |
+
a2687
|
438 |
+
a2688
|
439 |
+
a2689
|
440 |
+
a2690
|
441 |
+
a2691
|
442 |
+
a2692
|
443 |
+
a2693
|
444 |
+
a2694
|
445 |
+
a2695
|
446 |
+
a2696
|
447 |
+
a2697
|
448 |
+
a2698
|
449 |
+
a2699
|
450 |
+
a2700
|
451 |
+
a2701
|
452 |
+
a2702
|
453 |
+
a2703
|
454 |
+
a2704
|
455 |
+
a2705
|
456 |
+
a2706
|
457 |
+
a2707
|
458 |
+
a2708
|
459 |
+
a2709
|
460 |
+
a2710
|
461 |
+
a2711
|
462 |
+
a2712
|
463 |
+
a2713
|
464 |
+
a2714
|
465 |
+
a2715
|
466 |
+
a2716
|
467 |
+
a2717
|
468 |
+
a2718
|
469 |
+
a2719
|
470 |
+
a2720
|
471 |
+
a2721
|
472 |
+
a2722
|
473 |
+
a2723
|
474 |
+
a2724
|
475 |
+
a2725
|
476 |
+
a2726
|
477 |
+
a2727
|
478 |
+
a2728
|
479 |
+
a2729
|
480 |
+
a2730
|
481 |
+
a2731
|
482 |
+
a2732
|
483 |
+
a2733
|
484 |
+
a2734
|
485 |
+
a2735
|
486 |
+
a2736
|
487 |
+
a2737
|
488 |
+
a2738
|
489 |
+
a2739
|
490 |
+
a2740
|
491 |
+
a2741
|
492 |
+
a2742
|
493 |
+
a2743
|
494 |
+
a2744
|
495 |
+
a2745
|
496 |
+
a2746
|
497 |
+
a2747
|
498 |
+
a2748
|
499 |
+
a2749
|
500 |
+
a2750
|
501 |
+
a2751
|
502 |
+
a2752
|
503 |
+
a2753
|
504 |
+
a2754
|
505 |
+
a2755
|
506 |
+
a2756
|
507 |
+
a2757
|
508 |
+
a2758
|
509 |
+
a2759
|
510 |
+
a2760
|
511 |
+
a2761
|
512 |
+
a2762
|
513 |
+
a2763
|
514 |
+
a2764
|
515 |
+
a2765
|
516 |
+
a2766
|
517 |
+
a2767
|
518 |
+
a2768
|
519 |
+
a2769
|
520 |
+
a2770
|
521 |
+
a2771
|
522 |
+
a2772
|
523 |
+
a2773
|
524 |
+
a2774
|
525 |
+
a2775
|
526 |
+
a2776
|
527 |
+
a2777
|
528 |
+
a2778
|
529 |
+
a2779
|
530 |
+
a2780
|
531 |
+
a2781
|
532 |
+
a2782
|
533 |
+
a2783
|
534 |
+
a2784
|
535 |
+
a2785
|
536 |
+
a2786
|
537 |
+
a2787
|
538 |
+
a2788
|
539 |
+
a2789
|
540 |
+
a2790
|
541 |
+
a2791
|
542 |
+
a2792
|
543 |
+
a2793
|
544 |
+
a2794
|
545 |
+
a2795
|
546 |
+
a2796
|
547 |
+
a2797
|
548 |
+
a2798
|
549 |
+
a2799
|
550 |
+
a2800
|
551 |
+
a2801
|
552 |
+
a2802
|
553 |
+
a2803
|
554 |
+
a2804
|
555 |
+
a2805
|
556 |
+
a2806
|
557 |
+
a2807
|
558 |
+
a2808
|
559 |
+
a2809
|
560 |
+
a2810
|
561 |
+
a2811
|
562 |
+
a2812
|
563 |
+
a2813
|
564 |
+
a2814
|
565 |
+
a2815
|
566 |
+
a2816
|
567 |
+
a2817
|
568 |
+
a2818
|
569 |
+
a2819
|
570 |
+
a2820
|
571 |
+
a2821
|
572 |
+
a2822
|
573 |
+
a2823
|
574 |
+
a2824
|
575 |
+
a2825
|
576 |
+
a2826
|
577 |
+
a2827
|
578 |
+
a2828
|
579 |
+
a2829
|
580 |
+
a2830
|
581 |
+
a2831
|
582 |
+
a2832
|
583 |
+
a2833
|
584 |
+
a2834
|
585 |
+
a2835
|
586 |
+
a2836
|
587 |
+
a2837
|
588 |
+
a2838
|
589 |
+
a2839
|
590 |
+
a2840
|
591 |
+
a2841
|
592 |
+
a2842
|
593 |
+
a2843
|
594 |
+
a2844
|
595 |
+
a2845
|
596 |
+
a2846
|
597 |
+
a2847
|
598 |
+
a2848
|
599 |
+
a2849
|
600 |
+
a2850
|
601 |
+
a2851
|
602 |
+
a2852
|
603 |
+
a2853
|
604 |
+
a2854
|
605 |
+
a2855
|
606 |
+
a2856
|
607 |
+
a2857
|
608 |
+
a2858
|
609 |
+
a2859
|
610 |
+
a2860
|
611 |
+
a2861
|
612 |
+
a2862
|
613 |
+
a2863
|
614 |
+
a2864
|
615 |
+
a2865
|
616 |
+
a2866
|
617 |
+
a2867
|
618 |
+
a2868
|
619 |
+
a2869
|
620 |
+
a2870
|
621 |
+
a2871
|
622 |
+
a2872
|
623 |
+
a2873
|
624 |
+
a2874
|
625 |
+
a2875
|
626 |
+
a2876
|
627 |
+
a2877
|
628 |
+
a2878
|
629 |
+
a2879
|
630 |
+
a2880
|
631 |
+
a2881
|
632 |
+
a2882
|
633 |
+
a2883
|
634 |
+
a2884
|
635 |
+
a2885
|
636 |
+
a2886
|
637 |
+
a2887
|
638 |
+
a2888
|
639 |
+
a2889
|
640 |
+
a2890
|
641 |
+
a2891
|
642 |
+
a2892
|
643 |
+
a2893
|
644 |
+
a2894
|
645 |
+
a2895
|
646 |
+
a2896
|
647 |
+
a2897
|
648 |
+
a2898
|
649 |
+
a2899
|
650 |
+
a2900
|
651 |
+
a2901
|
652 |
+
a2902
|
653 |
+
a2903
|
654 |
+
a2904
|
655 |
+
a2905
|
656 |
+
a2906
|
657 |
+
a2907
|
658 |
+
a2908
|
659 |
+
a2909
|
660 |
+
a2910
|
661 |
+
a2911
|
662 |
+
a2912
|
663 |
+
a2913
|
664 |
+
a2914
|
665 |
+
a2915
|
666 |
+
a2916
|
667 |
+
a2917
|
668 |
+
a2918
|
669 |
+
a2919
|
670 |
+
a2920
|
671 |
+
a2921
|
672 |
+
a2922
|
673 |
+
a2923
|
674 |
+
a2924
|
675 |
+
a2925
|
676 |
+
a2926
|
677 |
+
a2927
|
678 |
+
a2928
|
679 |
+
a2929
|
680 |
+
a2930
|
681 |
+
a2931
|
682 |
+
a2932
|
683 |
+
a2933
|
684 |
+
a2934
|
685 |
+
a2935
|
686 |
+
a2936
|
687 |
+
a2937
|
688 |
+
a2938
|
689 |
+
a2939
|
690 |
+
a2940
|
691 |
+
a2941
|
692 |
+
a2942
|
693 |
+
a2943
|
694 |
+
a2944
|
695 |
+
a2945
|
696 |
+
a2946
|
697 |
+
a2947
|
698 |
+
a2948
|
699 |
+
a2949
|
700 |
+
a2950
|
701 |
+
a2951
|
702 |
+
a2952
|
703 |
+
a2953
|
704 |
+
a2954
|
705 |
+
a2955
|
706 |
+
a2956
|
707 |
+
a2957
|
708 |
+
a2958
|
709 |
+
a2959
|
710 |
+
a2960
|
711 |
+
a2961
|
712 |
+
a2962
|
713 |
+
a2963
|
714 |
+
a2964
|
715 |
+
a2965
|
716 |
+
a2966
|
717 |
+
a2967
|
718 |
+
a2968
|
719 |
+
a2969
|
720 |
+
a2970
|
721 |
+
a2971
|
722 |
+
a2972
|
723 |
+
a2973
|
724 |
+
a2974
|
725 |
+
a2975
|
726 |
+
a2976
|
727 |
+
a2977
|
728 |
+
a2978
|
729 |
+
a2979
|
730 |
+
a2980
|
731 |
+
a2981
|
732 |
+
a2982
|
733 |
+
a2983
|
734 |
+
a2984
|
735 |
+
a2985
|
736 |
+
a2986
|
737 |
+
a2987
|
738 |
+
a2988
|
739 |
+
a2989
|
740 |
+
a2990
|
741 |
+
a2991
|
742 |
+
a2992
|
743 |
+
a2993
|
744 |
+
a2994
|
745 |
+
a2995
|
746 |
+
a2996
|
747 |
+
a2997
|
748 |
+
a2998
|
749 |
+
a2999
|
750 |
+
a3000
|
751 |
+
a3001
|
752 |
+
a3002
|
753 |
+
a3003
|
754 |
+
a3004
|
755 |
+
a3005
|
756 |
+
a3006
|
757 |
+
a3007
|
758 |
+
a3008
|
759 |
+
a3009
|
760 |
+
a3010
|
761 |
+
a3011
|
762 |
+
a3012
|
763 |
+
a3013
|
764 |
+
a3014
|
765 |
+
a3015
|
766 |
+
a3016
|
767 |
+
a3017
|
768 |
+
a3018
|
769 |
+
a3019
|
770 |
+
a3020
|
771 |
+
a3021
|
772 |
+
a3022
|
773 |
+
a3023
|
774 |
+
a3024
|
775 |
+
a3025
|
776 |
+
a3026
|
777 |
+
a3027
|
778 |
+
a3028
|
779 |
+
a3029
|
780 |
+
a3030
|
781 |
+
a3031
|
782 |
+
a3032
|
783 |
+
a3033
|
784 |
+
a3034
|
785 |
+
a3035
|
786 |
+
a3036
|
787 |
+
a3037
|
788 |
+
a3038
|
789 |
+
a3039
|
790 |
+
a3040
|
791 |
+
a3041
|
792 |
+
a3042
|
793 |
+
a3043
|
794 |
+
a3044
|
795 |
+
a3045
|
796 |
+
a3046
|
797 |
+
a3047
|
798 |
+
a3048
|
799 |
+
a3049
|
800 |
+
a3050
|
801 |
+
a3051
|
802 |
+
a3052
|
803 |
+
a3053
|
804 |
+
a3054
|
805 |
+
a3055
|
806 |
+
a3056
|
807 |
+
a3057
|
808 |
+
a3058
|
809 |
+
a3059
|
810 |
+
a3060
|
811 |
+
a3061
|
812 |
+
a3062
|
813 |
+
a3063
|
814 |
+
a3064
|
815 |
+
a3065
|
816 |
+
a3066
|
817 |
+
a3067
|
818 |
+
a3068
|
819 |
+
a3069
|
820 |
+
a3070
|
821 |
+
a3071
|
822 |
+
a3072
|
823 |
+
a3073
|
824 |
+
a3074
|
825 |
+
a3075
|
826 |
+
a3076
|
827 |
+
a3077
|
828 |
+
a3078
|
829 |
+
a3079
|
830 |
+
a3080
|
831 |
+
a3081
|
832 |
+
a3082
|
833 |
+
a3083
|
834 |
+
a3084
|
835 |
+
a3085
|
836 |
+
a3086
|
837 |
+
a3087
|
838 |
+
a3088
|
839 |
+
a3089
|
840 |
+
a3090
|
841 |
+
a3091
|
842 |
+
a3092
|
843 |
+
a3093
|
844 |
+
a3094
|
845 |
+
a3095
|
846 |
+
a3096
|
847 |
+
a3097
|
848 |
+
a3098
|
849 |
+
a3099
|
850 |
+
a3100
|
851 |
+
a3101
|
852 |
+
a3102
|
853 |
+
a3103
|
854 |
+
a3104
|
855 |
+
a3105
|
856 |
+
a3106
|
857 |
+
a3107
|
858 |
+
a3108
|
859 |
+
a3109
|
860 |
+
a3110
|
861 |
+
a3111
|
862 |
+
a3112
|
863 |
+
a3113
|
864 |
+
a3114
|
865 |
+
a3115
|
866 |
+
a3116
|
867 |
+
a3117
|
868 |
+
a3118
|
869 |
+
a3119
|
870 |
+
a3120
|
871 |
+
a3121
|
872 |
+
a3122
|
873 |
+
a3123
|
874 |
+
a3124
|
875 |
+
a3125
|
876 |
+
a3126
|
877 |
+
a3127
|
878 |
+
a3128
|
879 |
+
a3129
|
880 |
+
a3130
|
881 |
+
a3131
|
882 |
+
a3132
|
883 |
+
a3133
|
884 |
+
a3134
|
885 |
+
a3135
|
886 |
+
a3136
|
887 |
+
a3137
|
888 |
+
a3138
|
889 |
+
a3139
|
890 |
+
a3140
|
891 |
+
a3141
|
892 |
+
a3142
|
893 |
+
a3143
|
894 |
+
a3144
|
895 |
+
a3145
|
896 |
+
a3146
|
897 |
+
a3147
|
898 |
+
a3148
|
899 |
+
a3149
|
900 |
+
a3150
|
901 |
+
a3151
|
902 |
+
a3152
|
903 |
+
a3153
|
904 |
+
a3154
|
905 |
+
a3155
|
906 |
+
a3156
|
907 |
+
a3157
|
908 |
+
a3158
|
909 |
+
a3159
|
910 |
+
a3160
|
911 |
+
a3161
|
912 |
+
a3162
|
913 |
+
a3163
|
914 |
+
a3164
|
915 |
+
a3165
|
916 |
+
a3166
|
917 |
+
a3167
|
918 |
+
a3168
|
919 |
+
a3169
|
920 |
+
a3170
|
921 |
+
a3171
|
922 |
+
a3172
|
923 |
+
a3173
|
924 |
+
a3174
|
925 |
+
a3175
|
926 |
+
a3176
|
927 |
+
a3177
|
928 |
+
a3178
|
929 |
+
a3179
|
930 |
+
a3180
|
931 |
+
a3181
|
932 |
+
a3182
|
933 |
+
a3183
|
934 |
+
a3184
|
935 |
+
a3185
|
936 |
+
a3186
|
937 |
+
a3187
|
938 |
+
a3188
|
939 |
+
a3189
|
940 |
+
a3190
|
941 |
+
a3191
|
942 |
+
a3192
|
943 |
+
a3193
|
944 |
+
a3194
|
945 |
+
a3195
|
946 |
+
a3196
|
947 |
+
a3197
|
948 |
+
a3198
|
949 |
+
a3199
|
950 |
+
a3200
|
951 |
+
a3201
|
952 |
+
a3202
|
953 |
+
a3203
|
954 |
+
a3204
|
955 |
+
a3205
|
956 |
+
a3206
|
957 |
+
a3207
|
958 |
+
a3208
|
959 |
+
a3209
|
960 |
+
a3210
|
961 |
+
a3211
|
962 |
+
a3212
|
963 |
+
a3213
|
964 |
+
a3214
|
965 |
+
a3215
|
966 |
+
a3216
|
967 |
+
a3217
|
968 |
+
a3218
|
969 |
+
a3219
|
970 |
+
a3220
|
971 |
+
a3221
|
972 |
+
a3222
|
973 |
+
a3223
|
974 |
+
a3224
|
975 |
+
a3225
|
976 |
+
a3226
|
977 |
+
a3227
|
978 |
+
a3228
|
979 |
+
a3229
|
980 |
+
a3230
|
981 |
+
a3231
|
982 |
+
a3232
|
983 |
+
a3233
|
984 |
+
a3234
|
985 |
+
a3235
|
986 |
+
a3236
|
987 |
+
a3237
|
988 |
+
a3238
|
989 |
+
a3239
|
990 |
+
a3240
|
991 |
+
a3241
|
992 |
+
a3242
|
993 |
+
a3243
|
994 |
+
a3244
|
995 |
+
a3245
|
996 |
+
a3246
|
997 |
+
a3247
|
998 |
+
a3248
|
999 |
+
a3249
|
1000 |
+
a3250
|
1001 |
+
a3251
|
1002 |
+
a3252
|
1003 |
+
a3253
|
1004 |
+
a3254
|
1005 |
+
a3255
|
1006 |
+
a3256
|
1007 |
+
a3257
|
1008 |
+
a3258
|
1009 |
+
a3259
|
1010 |
+
a3260
|
1011 |
+
a3261
|
1012 |
+
a3262
|
1013 |
+
a3263
|
1014 |
+
a3264
|
1015 |
+
a3265
|
1016 |
+
a3266
|
1017 |
+
a3267
|
1018 |
+
a3268
|
1019 |
+
a3269
|
1020 |
+
a3270
|
1021 |
+
a3271
|
1022 |
+
a3272
|
1023 |
+
a3273
|
1024 |
+
a3274
|
1025 |
+
a3275
|
1026 |
+
a3276
|
1027 |
+
a3277
|
1028 |
+
a3278
|
1029 |
+
a3279
|
1030 |
+
a3280
|
1031 |
+
a3281
|
1032 |
+
a3282
|
1033 |
+
a3283
|
1034 |
+
a3284
|
1035 |
+
a3285
|
1036 |
+
a3286
|
1037 |
+
a3287
|
1038 |
+
a3288
|
1039 |
+
a3289
|
1040 |
+
a3290
|
1041 |
+
a3291
|
1042 |
+
a3292
|
1043 |
+
a3293
|
1044 |
+
a3294
|
1045 |
+
a3295
|
1046 |
+
a3296
|
1047 |
+
a3297
|
1048 |
+
a3298
|
1049 |
+
a3299
|
1050 |
+
a3300
|
1051 |
+
a3301
|
1052 |
+
a3302
|
1053 |
+
a3303
|
1054 |
+
a3304
|
1055 |
+
a3305
|
1056 |
+
a3306
|
1057 |
+
a3307
|
1058 |
+
a3308
|
1059 |
+
a3309
|
1060 |
+
a3310
|
1061 |
+
a3311
|
1062 |
+
a3312
|
1063 |
+
a3313
|
1064 |
+
a3314
|
1065 |
+
a3315
|
1066 |
+
a3316
|
1067 |
+
a3317
|
1068 |
+
a3318
|
1069 |
+
a3319
|
1070 |
+
a3320
|
1071 |
+
a3321
|
1072 |
+
a3322
|
1073 |
+
a3323
|
1074 |
+
a3324
|
1075 |
+
a3325
|
1076 |
+
a3326
|
1077 |
+
a3327
|
1078 |
+
a3328
|
1079 |
+
a3329
|
1080 |
+
a3330
|
1081 |
+
a3331
|
1082 |
+
a3332
|
1083 |
+
a3333
|
1084 |
+
a3334
|
1085 |
+
a3335
|
1086 |
+
a3336
|
1087 |
+
a3337
|
1088 |
+
a3338
|
1089 |
+
a3339
|
1090 |
+
a3340
|
1091 |
+
a3341
|
1092 |
+
a3342
|
1093 |
+
a3343
|
1094 |
+
a3344
|
1095 |
+
a3345
|
1096 |
+
a3346
|
1097 |
+
a3347
|
1098 |
+
a3348
|
1099 |
+
a3349
|
1100 |
+
a3350
|
1101 |
+
a3351
|
1102 |
+
a3352
|
1103 |
+
a3353
|
1104 |
+
a3354
|
1105 |
+
a3355
|
1106 |
+
a3356
|
1107 |
+
a3357
|
1108 |
+
a3358
|
1109 |
+
a3359
|
1110 |
+
a3360
|
1111 |
+
a3361
|
1112 |
+
a3362
|
1113 |
+
a3363
|
1114 |
+
a3364
|
1115 |
+
a3365
|
1116 |
+
a3366
|
1117 |
+
a3367
|
1118 |
+
a3368
|
1119 |
+
a3369
|
1120 |
+
a3370
|
1121 |
+
a3371
|
1122 |
+
a3372
|
1123 |
+
a3373
|
1124 |
+
a3374
|
1125 |
+
a3375
|
1126 |
+
a3376
|
1127 |
+
a3377
|
1128 |
+
a3378
|
1129 |
+
a3379
|
1130 |
+
a3380
|
1131 |
+
a3381
|
1132 |
+
a3382
|
1133 |
+
a3383
|
1134 |
+
a3384
|
1135 |
+
a3385
|
1136 |
+
a3386
|
1137 |
+
a3387
|
1138 |
+
a3388
|
1139 |
+
a3389
|
1140 |
+
a3390
|
1141 |
+
a3391
|
1142 |
+
a3392
|
1143 |
+
a3393
|
1144 |
+
a3394
|
1145 |
+
a3395
|
1146 |
+
a3396
|
1147 |
+
a3397
|
1148 |
+
a3398
|
1149 |
+
a3399
|
1150 |
+
a3400
|
1151 |
+
a3401
|
1152 |
+
a3402
|
1153 |
+
a3403
|
1154 |
+
a3404
|
1155 |
+
a3405
|
1156 |
+
a3406
|
1157 |
+
a3407
|
1158 |
+
a3408
|
1159 |
+
a3409
|
1160 |
+
a3410
|
1161 |
+
a3411
|
1162 |
+
a3412
|
1163 |
+
a3413
|
1164 |
+
a3414
|
1165 |
+
a3415
|
1166 |
+
a3416
|
1167 |
+
a3417
|
1168 |
+
a3418
|
1169 |
+
a3419
|
1170 |
+
a3420
|
1171 |
+
a3421
|
1172 |
+
a3422
|
1173 |
+
a3423
|
1174 |
+
a3424
|
1175 |
+
a3425
|
1176 |
+
a3426
|
1177 |
+
a3427
|
1178 |
+
a3428
|
1179 |
+
a3429
|
1180 |
+
a3430
|
1181 |
+
a3431
|
1182 |
+
a3432
|
1183 |
+
a3433
|
1184 |
+
a3434
|
1185 |
+
a3435
|
1186 |
+
a3436
|
1187 |
+
a3437
|
1188 |
+
a3438
|
1189 |
+
a3439
|
1190 |
+
a3440
|
1191 |
+
a3441
|
1192 |
+
a3442
|
1193 |
+
a3443
|
1194 |
+
a3444
|
1195 |
+
a3445
|
1196 |
+
a3446
|
1197 |
+
a3447
|
1198 |
+
a3448
|
1199 |
+
a3449
|
1200 |
+
a3450
|
1201 |
+
a3451
|
1202 |
+
a3452
|
1203 |
+
a3453
|
1204 |
+
a3454
|
1205 |
+
a3455
|
1206 |
+
a3456
|
1207 |
+
a3457
|
1208 |
+
a3458
|
1209 |
+
a3459
|
1210 |
+
a3460
|
1211 |
+
a3461
|
1212 |
+
a3462
|
1213 |
+
a3463
|
1214 |
+
a3464
|
1215 |
+
a3465
|
1216 |
+
a3466
|
1217 |
+
a3467
|
1218 |
+
a3468
|
1219 |
+
a3469
|
1220 |
+
a3470
|
1221 |
+
a3471
|
1222 |
+
a3472
|
1223 |
+
a3473
|
1224 |
+
a3474
|
1225 |
+
a3475
|
1226 |
+
a3476
|
1227 |
+
a3477
|
1228 |
+
a3478
|
1229 |
+
a3479
|
1230 |
+
a3480
|
1231 |
+
a3481
|
1232 |
+
a3482
|
1233 |
+
a3483
|
1234 |
+
a3484
|
1235 |
+
a3485
|
1236 |
+
a3486
|
1237 |
+
a3487
|
1238 |
+
a3488
|
1239 |
+
a3489
|
1240 |
+
a3490
|
1241 |
+
a3491
|
1242 |
+
a3492
|
1243 |
+
a3493
|
1244 |
+
a3494
|
1245 |
+
a3495
|
1246 |
+
a3496
|
1247 |
+
a3497
|
1248 |
+
a3498
|
1249 |
+
a3499
|
1250 |
+
a3500
|
1251 |
+
a3501
|
1252 |
+
a3502
|
1253 |
+
a3503
|
1254 |
+
a3504
|
1255 |
+
a3505
|
1256 |
+
a3506
|
1257 |
+
a3507
|
1258 |
+
a3508
|
1259 |
+
a3509
|
1260 |
+
a3510
|
1261 |
+
a3511
|
1262 |
+
a3512
|
1263 |
+
a3513
|
1264 |
+
a3514
|
1265 |
+
a3515
|
1266 |
+
a3516
|
1267 |
+
a3517
|
1268 |
+
a3518
|
1269 |
+
a3519
|
1270 |
+
a3520
|
1271 |
+
a3521
|
1272 |
+
a3522
|
1273 |
+
a3523
|
1274 |
+
a3524
|
1275 |
+
a3525
|
1276 |
+
a3526
|
1277 |
+
a3527
|
1278 |
+
a3528
|
1279 |
+
a3529
|
1280 |
+
a3530
|
1281 |
+
a3531
|
1282 |
+
a3532
|
1283 |
+
a3533
|
1284 |
+
a3534
|
1285 |
+
a3535
|
1286 |
+
a3536
|
1287 |
+
a3537
|
1288 |
+
a3538
|
1289 |
+
a3539
|
1290 |
+
a3540
|
1291 |
+
a3541
|
1292 |
+
a3542
|
1293 |
+
a3543
|
1294 |
+
a3544
|
1295 |
+
a3545
|
1296 |
+
a3546
|
1297 |
+
a3547
|
1298 |
+
a3548
|
1299 |
+
a3549
|
1300 |
+
a3550
|
1301 |
+
a3551
|
1302 |
+
a3552
|
1303 |
+
a3553
|
1304 |
+
a3554
|
1305 |
+
a3555
|
1306 |
+
a3556
|
1307 |
+
a3557
|
1308 |
+
a3558
|
1309 |
+
a3559
|
1310 |
+
a3560
|
1311 |
+
a3561
|
1312 |
+
a3562
|
1313 |
+
a3563
|
1314 |
+
a3564
|
1315 |
+
a3565
|
1316 |
+
a3566
|
1317 |
+
a3567
|
1318 |
+
a3568
|
1319 |
+
a3569
|
1320 |
+
a3570
|
1321 |
+
a3571
|
1322 |
+
a3572
|
1323 |
+
a3573
|
1324 |
+
a3574
|
1325 |
+
a3575
|
1326 |
+
a3576
|
1327 |
+
a3577
|
1328 |
+
a3578
|
1329 |
+
a3579
|
1330 |
+
a3580
|
1331 |
+
a3581
|
1332 |
+
a3582
|
1333 |
+
a3583
|
1334 |
+
a3584
|
1335 |
+
a3585
|
1336 |
+
a3586
|
1337 |
+
a3587
|
1338 |
+
a3588
|
1339 |
+
a3589
|
1340 |
+
a3590
|
1341 |
+
a3591
|
1342 |
+
a3592
|
1343 |
+
a3593
|
1344 |
+
a3594
|
1345 |
+
a3595
|
1346 |
+
a3596
|
1347 |
+
a3597
|
1348 |
+
a3598
|
1349 |
+
a3599
|
1350 |
+
a3600
|
1351 |
+
a3601
|
1352 |
+
a3602
|
1353 |
+
a3603
|
1354 |
+
a3604
|
1355 |
+
a3605
|
1356 |
+
a3606
|
1357 |
+
a3607
|
1358 |
+
a3608
|
1359 |
+
a3609
|
1360 |
+
a3610
|
1361 |
+
a3611
|
1362 |
+
a3612
|
1363 |
+
a3613
|
1364 |
+
a3614
|
1365 |
+
a3615
|
1366 |
+
a3616
|
1367 |
+
a3617
|
1368 |
+
a3618
|
1369 |
+
a3619
|
1370 |
+
a3620
|
1371 |
+
a3621
|
1372 |
+
a3622
|
1373 |
+
a3623
|
1374 |
+
a3624
|
1375 |
+
a3625
|
1376 |
+
a3626
|
1377 |
+
a3627
|
1378 |
+
a3628
|
1379 |
+
a3629
|
1380 |
+
a3630
|
1381 |
+
a3631
|
1382 |
+
a3632
|
1383 |
+
a3633
|
1384 |
+
a3634
|
1385 |
+
a3635
|
1386 |
+
a3636
|
1387 |
+
a3637
|
1388 |
+
a3638
|
1389 |
+
a3639
|
1390 |
+
a3640
|
1391 |
+
a3641
|
1392 |
+
a3642
|
1393 |
+
a3643
|
1394 |
+
a3644
|
1395 |
+
a3645
|
1396 |
+
a3646
|
1397 |
+
a3647
|
1398 |
+
a3648
|
1399 |
+
a3649
|
1400 |
+
a3650
|
1401 |
+
a3651
|
1402 |
+
a3652
|
1403 |
+
a3653
|
1404 |
+
a3654
|
1405 |
+
a3655
|
1406 |
+
a3656
|
1407 |
+
a3657
|
1408 |
+
a3658
|
1409 |
+
a3659
|
1410 |
+
a3660
|
1411 |
+
a3661
|
1412 |
+
a3662
|
1413 |
+
a3663
|
1414 |
+
a3664
|
1415 |
+
a3665
|
1416 |
+
a3666
|
1417 |
+
a3667
|
1418 |
+
a3668
|
1419 |
+
a3669
|
1420 |
+
a3670
|
1421 |
+
a3671
|
1422 |
+
a3672
|
1423 |
+
a3673
|
1424 |
+
a3674
|
1425 |
+
a3675
|
1426 |
+
a3676
|
1427 |
+
a3677
|
1428 |
+
a3678
|
1429 |
+
a3679
|
1430 |
+
a3680
|
1431 |
+
a3681
|
1432 |
+
a3682
|
1433 |
+
a3683
|
1434 |
+
a3684
|
1435 |
+
a3685
|
1436 |
+
a3686
|
1437 |
+
a3687
|
1438 |
+
a3688
|
1439 |
+
a3689
|
1440 |
+
a3690
|
1441 |
+
a3691
|
1442 |
+
a3692
|
1443 |
+
a3693
|
1444 |
+
a3694
|
1445 |
+
a3695
|
1446 |
+
a3696
|
1447 |
+
a3697
|
1448 |
+
a3698
|
1449 |
+
a3699
|
1450 |
+
a3700
|
1451 |
+
a3701
|
1452 |
+
a3702
|
1453 |
+
a3703
|
1454 |
+
a3704
|
1455 |
+
a3705
|
1456 |
+
a3706
|
1457 |
+
a3707
|
1458 |
+
a3708
|
1459 |
+
a3709
|
1460 |
+
a3710
|
1461 |
+
a3711
|
1462 |
+
a3712
|
1463 |
+
a3713
|
1464 |
+
a3714
|
1465 |
+
a3715
|
1466 |
+
a3716
|
1467 |
+
a3717
|
1468 |
+
a3718
|
1469 |
+
a3719
|
1470 |
+
a3720
|
1471 |
+
a3721
|
1472 |
+
a3722
|
1473 |
+
a3723
|
1474 |
+
a3724
|
1475 |
+
a3725
|
1476 |
+
a3726
|
1477 |
+
a3727
|
1478 |
+
a3728
|
1479 |
+
a3729
|
1480 |
+
a3730
|
1481 |
+
a3731
|
1482 |
+
a3732
|
1483 |
+
a3733
|
1484 |
+
a3734
|
1485 |
+
a3735
|
1486 |
+
a3736
|
1487 |
+
a3737
|
1488 |
+
a3738
|
1489 |
+
a3739
|
1490 |
+
a3740
|
1491 |
+
a3741
|
1492 |
+
a3742
|
1493 |
+
a3743
|
1494 |
+
a3744
|
1495 |
+
a3745
|
1496 |
+
a3746
|
1497 |
+
a3747
|
1498 |
+
a3748
|
1499 |
+
a3749
|
1500 |
+
a3750
|
1501 |
+
a3751
|
1502 |
+
a3752
|
1503 |
+
a3753
|
1504 |
+
a3754
|
1505 |
+
a3755
|
1506 |
+
a3756
|
1507 |
+
a3757
|
1508 |
+
a3758
|
1509 |
+
a3759
|
1510 |
+
a3760
|
1511 |
+
a3761
|
1512 |
+
a3762
|
1513 |
+
a3763
|
1514 |
+
a3764
|
1515 |
+
a3765
|
1516 |
+
a3766
|
1517 |
+
a3767
|
1518 |
+
a3768
|
1519 |
+
a3769
|
1520 |
+
a3770
|
1521 |
+
a3771
|
1522 |
+
a3772
|
1523 |
+
a3773
|
1524 |
+
a3774
|
1525 |
+
a3775
|
1526 |
+
a3776
|
1527 |
+
a3777
|
1528 |
+
a3778
|
1529 |
+
a3779
|
1530 |
+
a3780
|
1531 |
+
a3781
|
1532 |
+
a3782
|
1533 |
+
a3783
|
1534 |
+
a3784
|
1535 |
+
a3785
|
1536 |
+
a3786
|
1537 |
+
a3787
|
1538 |
+
a3788
|
1539 |
+
a3789
|
1540 |
+
a3790
|
1541 |
+
a3791
|
1542 |
+
a3792
|
1543 |
+
a3793
|
1544 |
+
a3794
|
1545 |
+
a3795
|
1546 |
+
a3796
|
1547 |
+
a3797
|
1548 |
+
a3798
|
1549 |
+
a3799
|
1550 |
+
a3800
|
1551 |
+
a3801
|
1552 |
+
a3802
|
1553 |
+
a3803
|
1554 |
+
a3804
|
1555 |
+
a3805
|
1556 |
+
a3806
|
1557 |
+
a3807
|
1558 |
+
a3808
|
1559 |
+
a3809
|
1560 |
+
a3810
|
1561 |
+
a3811
|
1562 |
+
a3812
|
1563 |
+
a3813
|
1564 |
+
a3814
|
1565 |
+
a3815
|
1566 |
+
a3816
|
1567 |
+
a3817
|
1568 |
+
a3818
|
1569 |
+
a3819
|
1570 |
+
a3820
|
1571 |
+
a3821
|
1572 |
+
a3822
|
1573 |
+
a3823
|
1574 |
+
a3824
|
1575 |
+
a3825
|
1576 |
+
a3826
|
1577 |
+
a3827
|
1578 |
+
a3828
|
1579 |
+
a3829
|
1580 |
+
a3830
|
1581 |
+
a3831
|
1582 |
+
a3832
|
1583 |
+
a3833
|
1584 |
+
a3834
|
1585 |
+
a3835
|
1586 |
+
a3836
|
1587 |
+
a3837
|
1588 |
+
a3838
|
1589 |
+
a3839
|
1590 |
+
a3840
|
1591 |
+
a3841
|
1592 |
+
a3842
|
1593 |
+
a3843
|
1594 |
+
a3844
|
1595 |
+
a3845
|
1596 |
+
a3846
|
1597 |
+
a3847
|
1598 |
+
a3848
|
1599 |
+
a3849
|
1600 |
+
a3850
|
1601 |
+
a3851
|
1602 |
+
a3852
|
1603 |
+
a3853
|
1604 |
+
a3854
|
1605 |
+
a3855
|
1606 |
+
a3856
|
1607 |
+
a3857
|
1608 |
+
a3858
|
1609 |
+
a3859
|
1610 |
+
a3860
|
1611 |
+
a3861
|
1612 |
+
a3862
|
1613 |
+
a3863
|
1614 |
+
a3864
|
1615 |
+
a3865
|
1616 |
+
a3866
|
1617 |
+
a3867
|
1618 |
+
a3868
|
1619 |
+
a3869
|
1620 |
+
a3870
|
1621 |
+
a3871
|
1622 |
+
a3872
|
1623 |
+
a3873
|
1624 |
+
a3874
|
1625 |
+
a3875
|
1626 |
+
a3876
|
1627 |
+
a3877
|
1628 |
+
a3878
|
1629 |
+
a3879
|
1630 |
+
a3880
|
1631 |
+
a3881
|
1632 |
+
a3882
|
1633 |
+
a3883
|
1634 |
+
a3884
|
1635 |
+
a3885
|
1636 |
+
a3886
|
1637 |
+
a3887
|
1638 |
+
a3888
|
1639 |
+
a3889
|
1640 |
+
a3890
|
1641 |
+
a3891
|
1642 |
+
a3892
|
1643 |
+
a3893
|
1644 |
+
a3894
|
1645 |
+
a3895
|
1646 |
+
a3896
|
1647 |
+
a3897
|
1648 |
+
a3898
|
1649 |
+
a3899
|
1650 |
+
a3900
|
1651 |
+
a3901
|
1652 |
+
a3902
|
1653 |
+
a3903
|
1654 |
+
a3904
|
1655 |
+
a3905
|
1656 |
+
a3906
|
1657 |
+
a3907
|
1658 |
+
a3908
|
1659 |
+
a3909
|
1660 |
+
a3910
|
1661 |
+
a3911
|
1662 |
+
a3912
|
1663 |
+
a3913
|
1664 |
+
a3914
|
1665 |
+
a3915
|
1666 |
+
a3916
|
1667 |
+
a3917
|
1668 |
+
a3918
|
1669 |
+
a3919
|
1670 |
+
a3920
|
1671 |
+
a3921
|
1672 |
+
a3922
|
1673 |
+
a3923
|
1674 |
+
a3924
|
1675 |
+
a3925
|
1676 |
+
a3926
|
1677 |
+
a3927
|
1678 |
+
a3928
|
1679 |
+
a3929
|
1680 |
+
a3930
|
1681 |
+
a3931
|
1682 |
+
a3932
|
1683 |
+
a3933
|
1684 |
+
a3934
|
1685 |
+
a3935
|
1686 |
+
a3936
|
1687 |
+
a3937
|
1688 |
+
a3938
|
1689 |
+
a3939
|
1690 |
+
a3940
|
1691 |
+
a3941
|
1692 |
+
a3942
|
1693 |
+
a3943
|
1694 |
+
a3944
|
1695 |
+
a3945
|
1696 |
+
a3946
|
1697 |
+
a3947
|
1698 |
+
a3948
|
1699 |
+
a3949
|
1700 |
+
a3950
|
1701 |
+
a3951
|
1702 |
+
a3952
|
1703 |
+
a3953
|
1704 |
+
a3954
|
1705 |
+
a3955
|
1706 |
+
a3956
|
1707 |
+
a3957
|
1708 |
+
a3958
|
1709 |
+
a3959
|
1710 |
+
a3960
|
1711 |
+
a3961
|
1712 |
+
a3962
|
1713 |
+
a3963
|
1714 |
+
a3964
|
1715 |
+
a3965
|
1716 |
+
a3966
|
1717 |
+
a3967
|
1718 |
+
a3968
|
1719 |
+
a3969
|
1720 |
+
a3970
|
1721 |
+
a3971
|
1722 |
+
a3972
|
1723 |
+
a3973
|
1724 |
+
a3974
|
1725 |
+
a3975
|
1726 |
+
a3976
|
1727 |
+
a3977
|
1728 |
+
a3978
|
1729 |
+
a3979
|
1730 |
+
a3980
|
1731 |
+
a3981
|
1732 |
+
a3982
|
1733 |
+
a3983
|
1734 |
+
a3984
|
1735 |
+
a3985
|
1736 |
+
a3986
|
1737 |
+
a3987
|
1738 |
+
a3988
|
1739 |
+
a3989
|
1740 |
+
a3990
|
1741 |
+
a3991
|
1742 |
+
a3992
|
1743 |
+
a3993
|
1744 |
+
a3994
|
1745 |
+
a3995
|
1746 |
+
a3996
|
1747 |
+
a3997
|
1748 |
+
a3998
|
1749 |
+
a3999
|
1750 |
+
a4000
|
1751 |
+
a4001
|
1752 |
+
a4002
|
1753 |
+
a4003
|
1754 |
+
a4004
|
1755 |
+
a4005
|
1756 |
+
a4006
|
1757 |
+
a4007
|
1758 |
+
a4008
|
1759 |
+
a4009
|
1760 |
+
a4010
|
1761 |
+
a4011
|
1762 |
+
a4012
|
1763 |
+
a4013
|
1764 |
+
a4014
|
1765 |
+
a4015
|
1766 |
+
a4016
|
1767 |
+
a4017
|
1768 |
+
a4018
|
1769 |
+
a4019
|
1770 |
+
a4020
|
1771 |
+
a4021
|
1772 |
+
a4022
|
1773 |
+
a4023
|
1774 |
+
a4024
|
1775 |
+
a4025
|
1776 |
+
a4026
|
1777 |
+
a4027
|
1778 |
+
a4028
|
1779 |
+
a4029
|
1780 |
+
a4030
|
1781 |
+
a4031
|
1782 |
+
a4032
|
1783 |
+
a4033
|
1784 |
+
a4034
|
1785 |
+
a4035
|
1786 |
+
a4036
|
1787 |
+
a4037
|
1788 |
+
a4038
|
1789 |
+
a4039
|
1790 |
+
a4040
|
1791 |
+
a4041
|
1792 |
+
a4042
|
1793 |
+
a4043
|
1794 |
+
a4044
|
1795 |
+
a4045
|
1796 |
+
a4046
|
1797 |
+
a4047
|
1798 |
+
a4048
|
1799 |
+
a4049
|
1800 |
+
a4050
|
1801 |
+
a4051
|
1802 |
+
a4052
|
1803 |
+
a4053
|
1804 |
+
a4054
|
1805 |
+
a4055
|
1806 |
+
a4056
|
1807 |
+
a4057
|
1808 |
+
a4058
|
1809 |
+
a4059
|
1810 |
+
a4060
|
1811 |
+
a4061
|
1812 |
+
a4062
|
1813 |
+
a4063
|
1814 |
+
a4064
|
1815 |
+
a4065
|
1816 |
+
a4066
|
1817 |
+
a4067
|
1818 |
+
a4068
|
1819 |
+
a4069
|
1820 |
+
a4070
|
1821 |
+
a4071
|
1822 |
+
a4072
|
1823 |
+
a4073
|
1824 |
+
a4074
|
1825 |
+
a4075
|
1826 |
+
a4076
|
1827 |
+
a4077
|
1828 |
+
a4078
|
1829 |
+
a4079
|
1830 |
+
a4080
|
1831 |
+
a4081
|
1832 |
+
a4082
|
1833 |
+
a4083
|
1834 |
+
a4084
|
1835 |
+
a4085
|
1836 |
+
a4086
|
1837 |
+
a4087
|
1838 |
+
a4088
|
1839 |
+
a4089
|
1840 |
+
a4090
|
1841 |
+
a4091
|
1842 |
+
a4092
|
1843 |
+
a4093
|
1844 |
+
a4094
|
1845 |
+
a4095
|
1846 |
+
a4096
|
1847 |
+
a4097
|
1848 |
+
a4098
|
1849 |
+
a4099
|
1850 |
+
a4100
|
1851 |
+
a4101
|
1852 |
+
a4102
|
1853 |
+
a4103
|
1854 |
+
a4104
|
1855 |
+
a4105
|
1856 |
+
a4106
|
1857 |
+
a4107
|
1858 |
+
a4108
|
1859 |
+
a4109
|
1860 |
+
a4110
|
1861 |
+
a4111
|
1862 |
+
a4112
|
1863 |
+
a4113
|
1864 |
+
a4114
|
1865 |
+
a4115
|
1866 |
+
a4116
|
1867 |
+
a4117
|
1868 |
+
a4118
|
1869 |
+
a4119
|
1870 |
+
a4120
|
1871 |
+
a4121
|
1872 |
+
a4122
|
1873 |
+
a4123
|
1874 |
+
a4124
|
1875 |
+
a4125
|
1876 |
+
a4126
|
1877 |
+
a4127
|
1878 |
+
a4128
|
1879 |
+
a4129
|
1880 |
+
a4130
|
1881 |
+
a4131
|
1882 |
+
a4132
|
1883 |
+
a4133
|
1884 |
+
a4134
|
1885 |
+
a4135
|
1886 |
+
a4136
|
1887 |
+
a4137
|
1888 |
+
a4138
|
1889 |
+
a4139
|
1890 |
+
a4140
|
1891 |
+
a4141
|
1892 |
+
a4142
|
1893 |
+
a4143
|
1894 |
+
a4144
|
1895 |
+
a4145
|
1896 |
+
a4146
|
1897 |
+
a4147
|
1898 |
+
a4148
|
1899 |
+
a4149
|
1900 |
+
a4150
|
1901 |
+
a4151
|
1902 |
+
a4152
|
1903 |
+
a4153
|
1904 |
+
a4154
|
1905 |
+
a4155
|
1906 |
+
a4156
|
1907 |
+
a4157
|
1908 |
+
a4158
|
1909 |
+
a4159
|
1910 |
+
a4160
|
1911 |
+
a4161
|
1912 |
+
a4162
|
1913 |
+
a4163
|
1914 |
+
a4164
|
1915 |
+
a4165
|
1916 |
+
a4166
|
1917 |
+
a4167
|
1918 |
+
a4168
|
1919 |
+
a4169
|
1920 |
+
a4170
|
1921 |
+
a4171
|
1922 |
+
a4172
|
1923 |
+
a4173
|
1924 |
+
a4174
|
1925 |
+
a4175
|
1926 |
+
a4176
|
1927 |
+
a4177
|
1928 |
+
a4178
|
1929 |
+
a4179
|
1930 |
+
a4180
|
1931 |
+
a4181
|
1932 |
+
a4182
|
1933 |
+
a4183
|
1934 |
+
a4184
|
1935 |
+
a4185
|
1936 |
+
a4186
|
1937 |
+
a4187
|
1938 |
+
a4188
|
1939 |
+
a4189
|
1940 |
+
a4190
|
1941 |
+
a4191
|
1942 |
+
a4192
|
1943 |
+
a4193
|
1944 |
+
a4194
|
1945 |
+
a4195
|
1946 |
+
a4196
|
1947 |
+
a4197
|
1948 |
+
a4198
|
1949 |
+
a4199
|
1950 |
+
a4200
|
1951 |
+
a4201
|
1952 |
+
a4202
|
1953 |
+
a4203
|
1954 |
+
a4204
|
1955 |
+
a4205
|
1956 |
+
a4206
|
1957 |
+
a4207
|
1958 |
+
a4208
|
1959 |
+
a4209
|
1960 |
+
a4210
|
1961 |
+
a4211
|
1962 |
+
a4212
|
1963 |
+
a4213
|
1964 |
+
a4214
|
1965 |
+
a4215
|
1966 |
+
a4216
|
1967 |
+
a4217
|
1968 |
+
a4218
|
1969 |
+
a4219
|
1970 |
+
a4220
|
1971 |
+
a4221
|
1972 |
+
a4222
|
1973 |
+
a4223
|
1974 |
+
a4224
|
1975 |
+
a4225
|
1976 |
+
a4226
|
1977 |
+
a4227
|
1978 |
+
a4228
|
1979 |
+
a4229
|
1980 |
+
a4230
|
1981 |
+
a4231
|
1982 |
+
a4232
|
1983 |
+
a4233
|
1984 |
+
a4234
|
1985 |
+
a4235
|
1986 |
+
a4236
|
1987 |
+
a4237
|
1988 |
+
a4238
|
1989 |
+
a4239
|
1990 |
+
a4240
|
1991 |
+
a4241
|
1992 |
+
a4242
|
1993 |
+
a4243
|
1994 |
+
a4244
|
1995 |
+
a4245
|
1996 |
+
a4246
|
1997 |
+
a4247
|
1998 |
+
a4248
|
1999 |
+
a4249
|
2000 |
+
a4250
|
2001 |
+
a4251
|
2002 |
+
a4252
|
2003 |
+
a4253
|
2004 |
+
a4254
|
2005 |
+
a4255
|
2006 |
+
a4256
|
2007 |
+
a4257
|
2008 |
+
a4258
|
2009 |
+
a4259
|
2010 |
+
a4260
|
2011 |
+
a4261
|
2012 |
+
a4262
|
2013 |
+
a4263
|
2014 |
+
a4264
|
2015 |
+
a4265
|
2016 |
+
a4266
|
2017 |
+
a4267
|
2018 |
+
a4268
|
2019 |
+
a4269
|
2020 |
+
a4270
|
2021 |
+
a4271
|
2022 |
+
a4272
|
2023 |
+
a4273
|
2024 |
+
a4274
|
2025 |
+
a4275
|
2026 |
+
a4276
|
2027 |
+
a4277
|
2028 |
+
a4278
|
2029 |
+
a4279
|
2030 |
+
a4280
|
2031 |
+
a4281
|
2032 |
+
a4282
|
2033 |
+
a4283
|
2034 |
+
a4284
|
2035 |
+
a4285
|
2036 |
+
a4286
|
2037 |
+
a4287
|
2038 |
+
a4288
|
2039 |
+
a4289
|
2040 |
+
a4290
|
2041 |
+
a4291
|
2042 |
+
a4292
|
2043 |
+
a4293
|
2044 |
+
a4294
|
2045 |
+
a4295
|
2046 |
+
a4296
|
2047 |
+
a4297
|
2048 |
+
a4298
|
2049 |
+
a4299
|
2050 |
+
a4300
|
2051 |
+
a4301
|
2052 |
+
a4302
|
2053 |
+
a4303
|
2054 |
+
a4304
|
2055 |
+
a4305
|
2056 |
+
a4306
|
2057 |
+
a4307
|
2058 |
+
a4308
|
2059 |
+
a4309
|
2060 |
+
a4310
|
2061 |
+
a4311
|
2062 |
+
a4312
|
2063 |
+
a4313
|
2064 |
+
a4314
|
2065 |
+
a4315
|
2066 |
+
a4316
|
2067 |
+
a4317
|
2068 |
+
a4318
|
2069 |
+
a4319
|
2070 |
+
a4320
|
2071 |
+
a4321
|
2072 |
+
a4322
|
2073 |
+
a4323
|
2074 |
+
a4324
|
2075 |
+
a4325
|
2076 |
+
a4326
|
2077 |
+
a4327
|
2078 |
+
a4328
|
2079 |
+
a4329
|
2080 |
+
a4330
|
2081 |
+
a4331
|
2082 |
+
a4332
|
2083 |
+
a4333
|
2084 |
+
a4334
|
2085 |
+
a4335
|
2086 |
+
a4336
|
2087 |
+
a4337
|
2088 |
+
a4338
|
2089 |
+
a4339
|
2090 |
+
a4340
|
2091 |
+
a4341
|
2092 |
+
a4342
|
2093 |
+
a4343
|
2094 |
+
a4344
|
2095 |
+
a4345
|
2096 |
+
a4346
|
2097 |
+
a4347
|
2098 |
+
a4348
|
2099 |
+
a4349
|
2100 |
+
a4350
|
2101 |
+
a4351
|
2102 |
+
a4352
|
2103 |
+
a4353
|
2104 |
+
a4354
|
2105 |
+
a4355
|
2106 |
+
a4356
|
2107 |
+
a4357
|
2108 |
+
a4358
|
2109 |
+
a4359
|
2110 |
+
a4360
|
2111 |
+
a4361
|
2112 |
+
a4362
|
2113 |
+
a4363
|
2114 |
+
a4364
|
2115 |
+
a4365
|
2116 |
+
a4366
|
2117 |
+
a4367
|
2118 |
+
a4368
|
2119 |
+
a4369
|
2120 |
+
a4370
|
2121 |
+
a4371
|
2122 |
+
a4372
|
2123 |
+
a4373
|
2124 |
+
a4374
|
2125 |
+
a4375
|
2126 |
+
a4376
|
2127 |
+
a4377
|
2128 |
+
a4378
|
2129 |
+
a4379
|
2130 |
+
a4380
|
2131 |
+
a4381
|
2132 |
+
a4382
|
2133 |
+
a4383
|
2134 |
+
a4384
|
2135 |
+
a4385
|
2136 |
+
a4386
|
2137 |
+
a4387
|
2138 |
+
a4388
|
2139 |
+
a4389
|
2140 |
+
a4390
|
2141 |
+
a4391
|
2142 |
+
a4392
|
2143 |
+
a4393
|
2144 |
+
a4394
|
2145 |
+
a4395
|
2146 |
+
a4396
|
2147 |
+
a4397
|
2148 |
+
a4398
|
2149 |
+
a4399
|
2150 |
+
a4400
|
2151 |
+
a4401
|
2152 |
+
a4402
|
2153 |
+
a4403
|
2154 |
+
a4404
|
2155 |
+
a4405
|
2156 |
+
a4406
|
2157 |
+
a4407
|
2158 |
+
a4408
|
2159 |
+
a4409
|
2160 |
+
a4410
|
2161 |
+
a4411
|
2162 |
+
a4412
|
2163 |
+
a4413
|
2164 |
+
a4414
|
2165 |
+
a4415
|
2166 |
+
a4416
|
2167 |
+
a4417
|
2168 |
+
a4418
|
2169 |
+
a4419
|
2170 |
+
a4420
|
2171 |
+
a4421
|
2172 |
+
a4422
|
2173 |
+
a4423
|
2174 |
+
a4424
|
2175 |
+
a4425
|
2176 |
+
a4426
|
2177 |
+
a4427
|
2178 |
+
a4428
|
2179 |
+
a4429
|
2180 |
+
a4430
|
2181 |
+
a4431
|
2182 |
+
a4432
|
2183 |
+
a4433
|
2184 |
+
a4434
|
2185 |
+
a4435
|
2186 |
+
a4436
|
2187 |
+
a4437
|
2188 |
+
a4438
|
2189 |
+
a4439
|
2190 |
+
a4440
|
2191 |
+
a4441
|
2192 |
+
a4442
|
2193 |
+
a4443
|
2194 |
+
a4444
|
2195 |
+
a4445
|
2196 |
+
a4446
|
2197 |
+
a4447
|
2198 |
+
a4448
|
2199 |
+
a4449
|
2200 |
+
a4450
|
2201 |
+
a4451
|
2202 |
+
a4452
|
2203 |
+
a4453
|
2204 |
+
a4454
|
2205 |
+
a4455
|
2206 |
+
a4456
|
2207 |
+
a4457
|
2208 |
+
a4458
|
2209 |
+
a4459
|
2210 |
+
a4460
|
2211 |
+
a4461
|
2212 |
+
a4462
|
2213 |
+
a4463
|
2214 |
+
a4464
|
2215 |
+
a4465
|
2216 |
+
a4466
|
2217 |
+
a4467
|
2218 |
+
a4468
|
2219 |
+
a4469
|
2220 |
+
a4470
|
2221 |
+
a4471
|
2222 |
+
a4472
|
2223 |
+
a4473
|
2224 |
+
a4474
|
2225 |
+
a4475
|
2226 |
+
a4476
|
2227 |
+
a4477
|
2228 |
+
a4478
|
2229 |
+
a4479
|
2230 |
+
a4480
|
2231 |
+
a4481
|
2232 |
+
a4482
|
2233 |
+
a4483
|
2234 |
+
a4484
|
2235 |
+
a4485
|
2236 |
+
a4486
|
2237 |
+
a4487
|
2238 |
+
a4488
|
2239 |
+
a4489
|
2240 |
+
a4490
|
2241 |
+
a4491
|
2242 |
+
a4492
|
2243 |
+
a4493
|
2244 |
+
a4494
|
2245 |
+
a4495
|
2246 |
+
a4496
|
2247 |
+
a4497
|
2248 |
+
a4498
|
2249 |
+
a4499
|
2250 |
+
a4500
|
mit5k_ids_filepath/upe_uegan/images_test.txt
ADDED
@@ -0,0 +1,500 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
a4501
|
2 |
+
a4502
|
3 |
+
a4503
|
4 |
+
a4504
|
5 |
+
a4505
|
6 |
+
a4506
|
7 |
+
a4507
|
8 |
+
a4508
|
9 |
+
a4509
|
10 |
+
a4510
|
11 |
+
a4511
|
12 |
+
a4512
|
13 |
+
a4513
|
14 |
+
a4514
|
15 |
+
a4515
|
16 |
+
a4516
|
17 |
+
a4517
|
18 |
+
a4518
|
19 |
+
a4519
|
20 |
+
a4520
|
21 |
+
a4521
|
22 |
+
a4522
|
23 |
+
a4523
|
24 |
+
a4524
|
25 |
+
a4525
|
26 |
+
a4526
|
27 |
+
a4527
|
28 |
+
a4528
|
29 |
+
a4529
|
30 |
+
a4530
|
31 |
+
a4531
|
32 |
+
a4532
|
33 |
+
a4533
|
34 |
+
a4534
|
35 |
+
a4535
|
36 |
+
a4536
|
37 |
+
a4537
|
38 |
+
a4538
|
39 |
+
a4539
|
40 |
+
a4540
|
41 |
+
a4541
|
42 |
+
a4542
|
43 |
+
a4543
|
44 |
+
a4544
|
45 |
+
a4545
|
46 |
+
a4546
|
47 |
+
a4547
|
48 |
+
a4548
|
49 |
+
a4549
|
50 |
+
a4550
|
51 |
+
a4551
|
52 |
+
a4552
|
53 |
+
a4553
|
54 |
+
a4554
|
55 |
+
a4555
|
56 |
+
a4556
|
57 |
+
a4557
|
58 |
+
a4558
|
59 |
+
a4559
|
60 |
+
a4560
|
61 |
+
a4561
|
62 |
+
a4562
|
63 |
+
a4563
|
64 |
+
a4564
|
65 |
+
a4565
|
66 |
+
a4566
|
67 |
+
a4567
|
68 |
+
a4568
|
69 |
+
a4569
|
70 |
+
a4570
|
71 |
+
a4571
|
72 |
+
a4572
|
73 |
+
a4573
|
74 |
+
a4574
|
75 |
+
a4575
|
76 |
+
a4576
|
77 |
+
a4577
|
78 |
+
a4578
|
79 |
+
a4579
|
80 |
+
a4580
|
81 |
+
a4581
|
82 |
+
a4582
|
83 |
+
a4583
|
84 |
+
a4584
|
85 |
+
a4585
|
86 |
+
a4586
|
87 |
+
a4587
|
88 |
+
a4588
|
89 |
+
a4589
|
90 |
+
a4590
|
91 |
+
a4591
|
92 |
+
a4592
|
93 |
+
a4593
|
94 |
+
a4594
|
95 |
+
a4595
|
96 |
+
a4596
|
97 |
+
a4597
|
98 |
+
a4598
|
99 |
+
a4599
|
100 |
+
a4600
|
101 |
+
a4601
|
102 |
+
a4602
|
103 |
+
a4603
|
104 |
+
a4604
|
105 |
+
a4605
|
106 |
+
a4606
|
107 |
+
a4607
|
108 |
+
a4608
|
109 |
+
a4609
|
110 |
+
a4610
|
111 |
+
a4611
|
112 |
+
a4612
|
113 |
+
a4613
|
114 |
+
a4614
|
115 |
+
a4615
|
116 |
+
a4616
|
117 |
+
a4617
|
118 |
+
a4618
|
119 |
+
a4619
|
120 |
+
a4620
|
121 |
+
a4621
|
122 |
+
a4622
|
123 |
+
a4623
|
124 |
+
a4624
|
125 |
+
a4625
|
126 |
+
a4626
|
127 |
+
a4627
|
128 |
+
a4628
|
129 |
+
a4629
|
130 |
+
a4630
|
131 |
+
a4631
|
132 |
+
a4632
|
133 |
+
a4633
|
134 |
+
a4634
|
135 |
+
a4635
|
136 |
+
a4636
|
137 |
+
a4637
|
138 |
+
a4638
|
139 |
+
a4639
|
140 |
+
a4640
|
141 |
+
a4641
|
142 |
+
a4642
|
143 |
+
a4643
|
144 |
+
a4644
|
145 |
+
a4645
|
146 |
+
a4646
|
147 |
+
a4647
|
148 |
+
a4648
|
149 |
+
a4649
|
150 |
+
a4650
|
151 |
+
a4651
|
152 |
+
a4652
|
153 |
+
a4653
|
154 |
+
a4654
|
155 |
+
a4655
|
156 |
+
a4656
|
157 |
+
a4657
|
158 |
+
a4658
|
159 |
+
a4659
|
160 |
+
a4660
|
161 |
+
a4661
|
162 |
+
a4662
|
163 |
+
a4663
|
164 |
+
a4664
|
165 |
+
a4665
|
166 |
+
a4666
|
167 |
+
a4667
|
168 |
+
a4668
|
169 |
+
a4669
|
170 |
+
a4670
|
171 |
+
a4671
|
172 |
+
a4672
|
173 |
+
a4673
|
174 |
+
a4674
|
175 |
+
a4675
|
176 |
+
a4676
|
177 |
+
a4677
|
178 |
+
a4678
|
179 |
+
a4679
|
180 |
+
a4680
|
181 |
+
a4681
|
182 |
+
a4682
|
183 |
+
a4683
|
184 |
+
a4684
|
185 |
+
a4685
|
186 |
+
a4686
|
187 |
+
a4687
|
188 |
+
a4688
|
189 |
+
a4689
|
190 |
+
a4690
|
191 |
+
a4691
|
192 |
+
a4692
|
193 |
+
a4693
|
194 |
+
a4694
|
195 |
+
a4695
|
196 |
+
a4696
|
197 |
+
a4697
|
198 |
+
a4698
|
199 |
+
a4699
|
200 |
+
a4700
|
201 |
+
a4701
|
202 |
+
a4702
|
203 |
+
a4703
|
204 |
+
a4704
|
205 |
+
a4705
|
206 |
+
a4706
|
207 |
+
a4707
|
208 |
+
a4708
|
209 |
+
a4709
|
210 |
+
a4710
|
211 |
+
a4711
|
212 |
+
a4712
|
213 |
+
a4713
|
214 |
+
a4714
|
215 |
+
a4715
|
216 |
+
a4716
|
217 |
+
a4717
|
218 |
+
a4718
|
219 |
+
a4719
|
220 |
+
a4720
|
221 |
+
a4721
|
222 |
+
a4722
|
223 |
+
a4723
|
224 |
+
a4724
|
225 |
+
a4725
|
226 |
+
a4726
|
227 |
+
a4727
|
228 |
+
a4728
|
229 |
+
a4729
|
230 |
+
a4730
|
231 |
+
a4731
|
232 |
+
a4732
|
233 |
+
a4733
|
234 |
+
a4734
|
235 |
+
a4735
|
236 |
+
a4736
|
237 |
+
a4737
|
238 |
+
a4738
|
239 |
+
a4739
|
240 |
+
a4740
|
241 |
+
a4741
|
242 |
+
a4742
|
243 |
+
a4743
|
244 |
+
a4744
|
245 |
+
a4745
|
246 |
+
a4746
|
247 |
+
a4747
|
248 |
+
a4748
|
249 |
+
a4749
|
250 |
+
a4750
|
251 |
+
a4751
|
252 |
+
a4752
|
253 |
+
a4753
|
254 |
+
a4754
|
255 |
+
a4755
|
256 |
+
a4756
|
257 |
+
a4757
|
258 |
+
a4758
|
259 |
+
a4759
|
260 |
+
a4760
|
261 |
+
a4761
|
262 |
+
a4762
|
263 |
+
a4763
|
264 |
+
a4764
|
265 |
+
a4765
|
266 |
+
a4766
|
267 |
+
a4767
|
268 |
+
a4768
|
269 |
+
a4769
|
270 |
+
a4770
|
271 |
+
a4771
|
272 |
+
a4772
|
273 |
+
a4773
|
274 |
+
a4774
|
275 |
+
a4775
|
276 |
+
a4776
|
277 |
+
a4777
|
278 |
+
a4778
|
279 |
+
a4779
|
280 |
+
a4780
|
281 |
+
a4781
|
282 |
+
a4782
|
283 |
+
a4783
|
284 |
+
a4784
|
285 |
+
a4785
|
286 |
+
a4786
|
287 |
+
a4787
|
288 |
+
a4788
|
289 |
+
a4789
|
290 |
+
a4790
|
291 |
+
a4791
|
292 |
+
a4792
|
293 |
+
a4793
|
294 |
+
a4794
|
295 |
+
a4795
|
296 |
+
a4796
|
297 |
+
a4797
|
298 |
+
a4798
|
299 |
+
a4799
|
300 |
+
a4800
|
301 |
+
a4801
|
302 |
+
a4802
|
303 |
+
a4803
|
304 |
+
a4804
|
305 |
+
a4805
|
306 |
+
a4806
|
307 |
+
a4807
|
308 |
+
a4808
|
309 |
+
a4809
|
310 |
+
a4810
|
311 |
+
a4811
|
312 |
+
a4812
|
313 |
+
a4813
|
314 |
+
a4814
|
315 |
+
a4815
|
316 |
+
a4816
|
317 |
+
a4817
|
318 |
+
a4818
|
319 |
+
a4819
|
320 |
+
a4820
|
321 |
+
a4821
|
322 |
+
a4822
|
323 |
+
a4823
|
324 |
+
a4824
|
325 |
+
a4825
|
326 |
+
a4826
|
327 |
+
a4827
|
328 |
+
a4828
|
329 |
+
a4829
|
330 |
+
a4830
|
331 |
+
a4831
|
332 |
+
a4832
|
333 |
+
a4833
|
334 |
+
a4834
|
335 |
+
a4835
|
336 |
+
a4836
|
337 |
+
a4837
|
338 |
+
a4838
|
339 |
+
a4839
|
340 |
+
a4840
|
341 |
+
a4841
|
342 |
+
a4842
|
343 |
+
a4843
|
344 |
+
a4844
|
345 |
+
a4845
|
346 |
+
a4846
|
347 |
+
a4847
|
348 |
+
a4848
|
349 |
+
a4849
|
350 |
+
a4850
|
351 |
+
a4851
|
352 |
+
a4852
|
353 |
+
a4853
|
354 |
+
a4854
|
355 |
+
a4855
|
356 |
+
a4856
|
357 |
+
a4857
|
358 |
+
a4858
|
359 |
+
a4859
|
360 |
+
a4860
|
361 |
+
a4861
|
362 |
+
a4862
|
363 |
+
a4863
|
364 |
+
a4864
|
365 |
+
a4865
|
366 |
+
a4866
|
367 |
+
a4867
|
368 |
+
a4868
|
369 |
+
a4869
|
370 |
+
a4870
|
371 |
+
a4871
|
372 |
+
a4872
|
373 |
+
a4873
|
374 |
+
a4874
|
375 |
+
a4875
|
376 |
+
a4876
|
377 |
+
a4877
|
378 |
+
a4878
|
379 |
+
a4879
|
380 |
+
a4880
|
381 |
+
a4881
|
382 |
+
a4882
|
383 |
+
a4883
|
384 |
+
a4884
|
385 |
+
a4885
|
386 |
+
a4886
|
387 |
+
a4887
|
388 |
+
a4888
|
389 |
+
a4889
|
390 |
+
a4890
|
391 |
+
a4891
|
392 |
+
a4892
|
393 |
+
a4893
|
394 |
+
a4894
|
395 |
+
a4895
|
396 |
+
a4896
|
397 |
+
a4897
|
398 |
+
a4898
|
399 |
+
a4899
|
400 |
+
a4900
|
401 |
+
a4901
|
402 |
+
a4902
|
403 |
+
a4903
|
404 |
+
a4904
|
405 |
+
a4905
|
406 |
+
a4906
|
407 |
+
a4907
|
408 |
+
a4908
|
409 |
+
a4909
|
410 |
+
a4910
|
411 |
+
a4911
|
412 |
+
a4912
|
413 |
+
a4913
|
414 |
+
a4914
|
415 |
+
a4915
|
416 |
+
a4916
|
417 |
+
a4917
|
418 |
+
a4918
|
419 |
+
a4919
|
420 |
+
a4920
|
421 |
+
a4921
|
422 |
+
a4922
|
423 |
+
a4923
|
424 |
+
a4924
|
425 |
+
a4925
|
426 |
+
a4926
|
427 |
+
a4927
|
428 |
+
a4928
|
429 |
+
a4929
|
430 |
+
a4930
|
431 |
+
a4931
|
432 |
+
a4932
|
433 |
+
a4933
|
434 |
+
a4934
|
435 |
+
a4935
|
436 |
+
a4936
|
437 |
+
a4937
|
438 |
+
a4938
|
439 |
+
a4939
|
440 |
+
a4940
|
441 |
+
a4941
|
442 |
+
a4942
|
443 |
+
a4943
|
444 |
+
a4944
|
445 |
+
a4945
|
446 |
+
a4946
|
447 |
+
a4947
|
448 |
+
a4948
|
449 |
+
a4949
|
450 |
+
a4950
|
451 |
+
a4951
|
452 |
+
a4952
|
453 |
+
a4953
|
454 |
+
a4954
|
455 |
+
a4955
|
456 |
+
a4956
|
457 |
+
a4957
|
458 |
+
a4958
|
459 |
+
a4959
|
460 |
+
a4960
|
461 |
+
a4961
|
462 |
+
a4962
|
463 |
+
a4963
|
464 |
+
a4964
|
465 |
+
a4965
|
466 |
+
a4966
|
467 |
+
a4967
|
468 |
+
a4968
|
469 |
+
a4969
|
470 |
+
a4970
|
471 |
+
a4971
|
472 |
+
a4972
|
473 |
+
a4973
|
474 |
+
a4974
|
475 |
+
a4975
|
476 |
+
a4976
|
477 |
+
a4977
|
478 |
+
a4978
|
479 |
+
a4979
|
480 |
+
a4980
|
481 |
+
a4981
|
482 |
+
a4982
|
483 |
+
a4983
|
484 |
+
a4984
|
485 |
+
a4985
|
486 |
+
a4986
|
487 |
+
a4987
|
488 |
+
a4988
|
489 |
+
a4989
|
490 |
+
a4990
|
491 |
+
a4991
|
492 |
+
a4992
|
493 |
+
a4993
|
494 |
+
a4994
|
495 |
+
a4995
|
496 |
+
a4996
|
497 |
+
a4997
|
498 |
+
a4998
|
499 |
+
a4999
|
500 |
+
a5000
|
mit5k_ids_filepath/upe_uegan/images_train.txt
ADDED
@@ -0,0 +1,4500 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
a0001
|
2 |
+
a0002
|
3 |
+
a0003
|
4 |
+
a0004
|
5 |
+
a0005
|
6 |
+
a0006
|
7 |
+
a0007
|
8 |
+
a0008
|
9 |
+
a0009
|
10 |
+
a0010
|
11 |
+
a0011
|
12 |
+
a0012
|
13 |
+
a0013
|
14 |
+
a0014
|
15 |
+
a0015
|
16 |
+
a0016
|
17 |
+
a0017
|
18 |
+
a0018
|
19 |
+
a0019
|
20 |
+
a0020
|
21 |
+
a0021
|
22 |
+
a0022
|
23 |
+
a0023
|
24 |
+
a0024
|
25 |
+
a0025
|
26 |
+
a0026
|
27 |
+
a0027
|
28 |
+
a0028
|
29 |
+
a0029
|
30 |
+
a0030
|
31 |
+
a0031
|
32 |
+
a0032
|
33 |
+
a0033
|
34 |
+
a0034
|
35 |
+
a0035
|
36 |
+
a0036
|
37 |
+
a0037
|
38 |
+
a0038
|
39 |
+
a0039
|
40 |
+
a0040
|
41 |
+
a0041
|
42 |
+
a0042
|
43 |
+
a0043
|
44 |
+
a0044
|
45 |
+
a0045
|
46 |
+
a0046
|
47 |
+
a0047
|
48 |
+
a0048
|
49 |
+
a0049
|
50 |
+
a0050
|
51 |
+
a0051
|
52 |
+
a0052
|
53 |
+
a0053
|
54 |
+
a0054
|
55 |
+
a0055
|
56 |
+
a0056
|
57 |
+
a0057
|
58 |
+
a0058
|
59 |
+
a0059
|
60 |
+
a0060
|
61 |
+
a0061
|
62 |
+
a0062
|
63 |
+
a0063
|
64 |
+
a0064
|
65 |
+
a0065
|
66 |
+
a0066
|
67 |
+
a0067
|
68 |
+
a0068
|
69 |
+
a0069
|
70 |
+
a0070
|
71 |
+
a0071
|
72 |
+
a0072
|
73 |
+
a0073
|
74 |
+
a0074
|
75 |
+
a0075
|
76 |
+
a0076
|
77 |
+
a0077
|
78 |
+
a0078
|
79 |
+
a0079
|
80 |
+
a0080
|
81 |
+
a0081
|
82 |
+
a0082
|
83 |
+
a0083
|
84 |
+
a0084
|
85 |
+
a0085
|
86 |
+
a0086
|
87 |
+
a0087
|
88 |
+
a0088
|
89 |
+
a0089
|
90 |
+
a0090
|
91 |
+
a0091
|
92 |
+
a0092
|
93 |
+
a0093
|
94 |
+
a0094
|
95 |
+
a0095
|
96 |
+
a0096
|
97 |
+
a0097
|
98 |
+
a0098
|
99 |
+
a0099
|
100 |
+
a0100
|
101 |
+
a0101
|
102 |
+
a0102
|
103 |
+
a0103
|
104 |
+
a0104
|
105 |
+
a0105
|
106 |
+
a0106
|
107 |
+
a0107
|
108 |
+
a0108
|
109 |
+
a0109
|
110 |
+
a0110
|
111 |
+
a0111
|
112 |
+
a0112
|
113 |
+
a0113
|
114 |
+
a0114
|
115 |
+
a0115
|
116 |
+
a0116
|
117 |
+
a0117
|
118 |
+
a0118
|
119 |
+
a0119
|
120 |
+
a0120
|
121 |
+
a0121
|
122 |
+
a0122
|
123 |
+
a0123
|
124 |
+
a0124
|
125 |
+
a0125
|
126 |
+
a0126
|
127 |
+
a0127
|
128 |
+
a0128
|
129 |
+
a0129
|
130 |
+
a0130
|
131 |
+
a0131
|
132 |
+
a0132
|
133 |
+
a0133
|
134 |
+
a0134
|
135 |
+
a0135
|
136 |
+
a0136
|
137 |
+
a0137
|
138 |
+
a0138
|
139 |
+
a0139
|
140 |
+
a0140
|
141 |
+
a0141
|
142 |
+
a0142
|
143 |
+
a0143
|
144 |
+
a0144
|
145 |
+
a0145
|
146 |
+
a0146
|
147 |
+
a0147
|
148 |
+
a0148
|
149 |
+
a0149
|
150 |
+
a0150
|
151 |
+
a0151
|
152 |
+
a0152
|
153 |
+
a0153
|
154 |
+
a0154
|
155 |
+
a0155
|
156 |
+
a0156
|
157 |
+
a0157
|
158 |
+
a0158
|
159 |
+
a0159
|
160 |
+
a0160
|
161 |
+
a0161
|
162 |
+
a0162
|
163 |
+
a0163
|
164 |
+
a0164
|
165 |
+
a0165
|
166 |
+
a0166
|
167 |
+
a0167
|
168 |
+
a0168
|
169 |
+
a0169
|
170 |
+
a0170
|
171 |
+
a0171
|
172 |
+
a0172
|
173 |
+
a0173
|
174 |
+
a0174
|
175 |
+
a0175
|
176 |
+
a0176
|
177 |
+
a0177
|
178 |
+
a0178
|
179 |
+
a0179
|
180 |
+
a0180
|
181 |
+
a0181
|
182 |
+
a0182
|
183 |
+
a0183
|
184 |
+
a0184
|
185 |
+
a0185
|
186 |
+
a0186
|
187 |
+
a0187
|
188 |
+
a0188
|
189 |
+
a0189
|
190 |
+
a0190
|
191 |
+
a0191
|
192 |
+
a0192
|
193 |
+
a0193
|
194 |
+
a0194
|
195 |
+
a0195
|
196 |
+
a0196
|
197 |
+
a0197
|
198 |
+
a0198
|
199 |
+
a0199
|
200 |
+
a0200
|
201 |
+
a0201
|
202 |
+
a0202
|
203 |
+
a0203
|
204 |
+
a0204
|
205 |
+
a0205
|
206 |
+
a0206
|
207 |
+
a0207
|
208 |
+
a0208
|
209 |
+
a0209
|
210 |
+
a0210
|
211 |
+
a0211
|
212 |
+
a0212
|
213 |
+
a0213
|
214 |
+
a0214
|
215 |
+
a0215
|
216 |
+
a0216
|
217 |
+
a0217
|
218 |
+
a0218
|
219 |
+
a0219
|
220 |
+
a0220
|
221 |
+
a0221
|
222 |
+
a0222
|
223 |
+
a0223
|
224 |
+
a0224
|
225 |
+
a0225
|
226 |
+
a0226
|
227 |
+
a0227
|
228 |
+
a0228
|
229 |
+
a0229
|
230 |
+
a0230
|
231 |
+
a0231
|
232 |
+
a0232
|
233 |
+
a0233
|
234 |
+
a0234
|
235 |
+
a0235
|
236 |
+
a0236
|
237 |
+
a0237
|
238 |
+
a0238
|
239 |
+
a0239
|
240 |
+
a0240
|
241 |
+
a0241
|
242 |
+
a0242
|
243 |
+
a0243
|
244 |
+
a0244
|
245 |
+
a0245
|
246 |
+
a0246
|
247 |
+
a0247
|
248 |
+
a0248
|
249 |
+
a0249
|
250 |
+
a0250
|
251 |
+
a0251
|
252 |
+
a0252
|
253 |
+
a0253
|
254 |
+
a0254
|
255 |
+
a0255
|
256 |
+
a0256
|
257 |
+
a0257
|
258 |
+
a0258
|
259 |
+
a0259
|
260 |
+
a0260
|
261 |
+
a0261
|
262 |
+
a0262
|
263 |
+
a0263
|
264 |
+
a0264
|
265 |
+
a0265
|
266 |
+
a0266
|
267 |
+
a0267
|
268 |
+
a0268
|
269 |
+
a0269
|
270 |
+
a0270
|
271 |
+
a0271
|
272 |
+
a0272
|
273 |
+
a0273
|
274 |
+
a0274
|
275 |
+
a0275
|
276 |
+
a0276
|
277 |
+
a0277
|
278 |
+
a0278
|
279 |
+
a0279
|
280 |
+
a0280
|
281 |
+
a0281
|
282 |
+
a0282
|
283 |
+
a0283
|
284 |
+
a0284
|
285 |
+
a0285
|
286 |
+
a0286
|
287 |
+
a0287
|
288 |
+
a0288
|
289 |
+
a0289
|
290 |
+
a0290
|
291 |
+
a0291
|
292 |
+
a0292
|
293 |
+
a0293
|
294 |
+
a0294
|
295 |
+
a0295
|
296 |
+
a0296
|
297 |
+
a0297
|
298 |
+
a0298
|
299 |
+
a0299
|
300 |
+
a0300
|
301 |
+
a0301
|
302 |
+
a0302
|
303 |
+
a0303
|
304 |
+
a0304
|
305 |
+
a0305
|
306 |
+
a0306
|
307 |
+
a0307
|
308 |
+
a0308
|
309 |
+
a0309
|
310 |
+
a0310
|
311 |
+
a0311
|
312 |
+
a0312
|
313 |
+
a0313
|
314 |
+
a0314
|
315 |
+
a0315
|
316 |
+
a0316
|
317 |
+
a0317
|
318 |
+
a0318
|
319 |
+
a0319
|
320 |
+
a0320
|
321 |
+
a0321
|
322 |
+
a0322
|
323 |
+
a0323
|
324 |
+
a0324
|
325 |
+
a0325
|
326 |
+
a0326
|
327 |
+
a0327
|
328 |
+
a0328
|
329 |
+
a0329
|
330 |
+
a0330
|
331 |
+
a0331
|
332 |
+
a0332
|
333 |
+
a0333
|
334 |
+
a0334
|
335 |
+
a0335
|
336 |
+
a0336
|
337 |
+
a0337
|
338 |
+
a0338
|
339 |
+
a0339
|
340 |
+
a0340
|
341 |
+
a0341
|
342 |
+
a0342
|
343 |
+
a0343
|
344 |
+
a0344
|
345 |
+
a0345
|
346 |
+
a0346
|
347 |
+
a0347
|
348 |
+
a0348
|
349 |
+
a0349
|
350 |
+
a0350
|
351 |
+
a0351
|
352 |
+
a0352
|
353 |
+
a0353
|
354 |
+
a0354
|
355 |
+
a0355
|
356 |
+
a0356
|
357 |
+
a0357
|
358 |
+
a0358
|
359 |
+
a0359
|
360 |
+
a0360
|
361 |
+
a0361
|
362 |
+
a0362
|
363 |
+
a0363
|
364 |
+
a0364
|
365 |
+
a0365
|
366 |
+
a0366
|
367 |
+
a0367
|
368 |
+
a0368
|
369 |
+
a0369
|
370 |
+
a0370
|
371 |
+
a0371
|
372 |
+
a0372
|
373 |
+
a0373
|
374 |
+
a0374
|
375 |
+
a0375
|
376 |
+
a0376
|
377 |
+
a0377
|
378 |
+
a0378
|
379 |
+
a0379
|
380 |
+
a0380
|
381 |
+
a0381
|
382 |
+
a0382
|
383 |
+
a0383
|
384 |
+
a0384
|
385 |
+
a0385
|
386 |
+
a0386
|
387 |
+
a0387
|
388 |
+
a0388
|
389 |
+
a0389
|
390 |
+
a0390
|
391 |
+
a0391
|
392 |
+
a0392
|
393 |
+
a0393
|
394 |
+
a0394
|
395 |
+
a0395
|
396 |
+
a0396
|
397 |
+
a0397
|
398 |
+
a0398
|
399 |
+
a0399
|
400 |
+
a0400
|
401 |
+
a0401
|
402 |
+
a0402
|
403 |
+
a0403
|
404 |
+
a0404
|
405 |
+
a0405
|
406 |
+
a0406
|
407 |
+
a0407
|
408 |
+
a0408
|
409 |
+
a0409
|
410 |
+
a0410
|
411 |
+
a0411
|
412 |
+
a0412
|
413 |
+
a0413
|
414 |
+
a0414
|
415 |
+
a0415
|
416 |
+
a0416
|
417 |
+
a0417
|
418 |
+
a0418
|
419 |
+
a0419
|
420 |
+
a0420
|
421 |
+
a0421
|
422 |
+
a0422
|
423 |
+
a0423
|
424 |
+
a0424
|
425 |
+
a0425
|
426 |
+
a0426
|
427 |
+
a0427
|
428 |
+
a0428
|
429 |
+
a0429
|
430 |
+
a0430
|
431 |
+
a0431
|
432 |
+
a0432
|
433 |
+
a0433
|
434 |
+
a0434
|
435 |
+
a0435
|
436 |
+
a0436
|
437 |
+
a0437
|
438 |
+
a0438
|
439 |
+
a0439
|
440 |
+
a0440
|
441 |
+
a0441
|
442 |
+
a0442
|
443 |
+
a0443
|
444 |
+
a0444
|
445 |
+
a0445
|
446 |
+
a0446
|
447 |
+
a0447
|
448 |
+
a0448
|
449 |
+
a0449
|
450 |
+
a0450
|
451 |
+
a0451
|
452 |
+
a0452
|
453 |
+
a0453
|
454 |
+
a0454
|
455 |
+
a0455
|
456 |
+
a0456
|
457 |
+
a0457
|
458 |
+
a0458
|
459 |
+
a0459
|
460 |
+
a0460
|
461 |
+
a0461
|
462 |
+
a0462
|
463 |
+
a0463
|
464 |
+
a0464
|
465 |
+
a0465
|
466 |
+
a0466
|
467 |
+
a0467
|
468 |
+
a0468
|
469 |
+
a0469
|
470 |
+
a0470
|
471 |
+
a0471
|
472 |
+
a0472
|
473 |
+
a0473
|
474 |
+
a0474
|
475 |
+
a0475
|
476 |
+
a0476
|
477 |
+
a0477
|
478 |
+
a0478
|
479 |
+
a0479
|
480 |
+
a0480
|
481 |
+
a0481
|
482 |
+
a0482
|
483 |
+
a0483
|
484 |
+
a0484
|
485 |
+
a0485
|
486 |
+
a0486
|
487 |
+
a0487
|
488 |
+
a0488
|
489 |
+
a0489
|
490 |
+
a0490
|
491 |
+
a0491
|
492 |
+
a0492
|
493 |
+
a0493
|
494 |
+
a0494
|
495 |
+
a0495
|
496 |
+
a0496
|
497 |
+
a0497
|
498 |
+
a0498
|
499 |
+
a0499
|
500 |
+
a0500
|
501 |
+
a0501
|
502 |
+
a0502
|
503 |
+
a0503
|
504 |
+
a0504
|
505 |
+
a0505
|
506 |
+
a0506
|
507 |
+
a0507
|
508 |
+
a0508
|
509 |
+
a0509
|
510 |
+
a0510
|
511 |
+
a0511
|
512 |
+
a0512
|
513 |
+
a0513
|
514 |
+
a0514
|
515 |
+
a0515
|
516 |
+
a0516
|
517 |
+
a0517
|
518 |
+
a0518
|
519 |
+
a0519
|
520 |
+
a0520
|
521 |
+
a0521
|
522 |
+
a0522
|
523 |
+
a0523
|
524 |
+
a0524
|
525 |
+
a0525
|
526 |
+
a0526
|
527 |
+
a0527
|
528 |
+
a0528
|
529 |
+
a0529
|
530 |
+
a0530
|
531 |
+
a0531
|
532 |
+
a0532
|
533 |
+
a0533
|
534 |
+
a0534
|
535 |
+
a0535
|
536 |
+
a0536
|
537 |
+
a0537
|
538 |
+
a0538
|
539 |
+
a0539
|
540 |
+
a0540
|
541 |
+
a0541
|
542 |
+
a0542
|
543 |
+
a0543
|
544 |
+
a0544
|
545 |
+
a0545
|
546 |
+
a0546
|
547 |
+
a0547
|
548 |
+
a0548
|
549 |
+
a0549
|
550 |
+
a0550
|
551 |
+
a0551
|
552 |
+
a0552
|
553 |
+
a0553
|
554 |
+
a0554
|
555 |
+
a0555
|
556 |
+
a0556
|
557 |
+
a0557
|
558 |
+
a0558
|
559 |
+
a0559
|
560 |
+
a0560
|
561 |
+
a0561
|
562 |
+
a0562
|
563 |
+
a0563
|
564 |
+
a0564
|
565 |
+
a0565
|
566 |
+
a0566
|
567 |
+
a0567
|
568 |
+
a0568
|
569 |
+
a0569
|
570 |
+
a0570
|
571 |
+
a0571
|
572 |
+
a0572
|
573 |
+
a0573
|
574 |
+
a0574
|
575 |
+
a0575
|
576 |
+
a0576
|
577 |
+
a0577
|
578 |
+
a0578
|
579 |
+
a0579
|
580 |
+
a0580
|
581 |
+
a0581
|
582 |
+
a0582
|
583 |
+
a0583
|
584 |
+
a0584
|
585 |
+
a0585
|
586 |
+
a0586
|
587 |
+
a0587
|
588 |
+
a0588
|
589 |
+
a0589
|
590 |
+
a0590
|
591 |
+
a0591
|
592 |
+
a0592
|
593 |
+
a0593
|
594 |
+
a0594
|
595 |
+
a0595
|
596 |
+
a0596
|
597 |
+
a0597
|
598 |
+
a0598
|
599 |
+
a0599
|
600 |
+
a0600
|
601 |
+
a0601
|
602 |
+
a0602
|
603 |
+
a0603
|
604 |
+
a0604
|
605 |
+
a0605
|
606 |
+
a0606
|
607 |
+
a0607
|
608 |
+
a0608
|
609 |
+
a0609
|
610 |
+
a0610
|
611 |
+
a0611
|
612 |
+
a0612
|
613 |
+
a0613
|
614 |
+
a0614
|
615 |
+
a0615
|
616 |
+
a0616
|
617 |
+
a0617
|
618 |
+
a0618
|
619 |
+
a0619
|
620 |
+
a0620
|
621 |
+
a0621
|
622 |
+
a0622
|
623 |
+
a0623
|
624 |
+
a0624
|
625 |
+
a0625
|
626 |
+
a0626
|
627 |
+
a0627
|
628 |
+
a0628
|
629 |
+
a0629
|
630 |
+
a0630
|
631 |
+
a0631
|
632 |
+
a0632
|
633 |
+
a0633
|
634 |
+
a0634
|
635 |
+
a0635
|
636 |
+
a0636
|
637 |
+
a0637
|
638 |
+
a0638
|
639 |
+
a0639
|
640 |
+
a0640
|
641 |
+
a0641
|
642 |
+
a0642
|
643 |
+
a0643
|
644 |
+
a0644
|
645 |
+
a0645
|
646 |
+
a0646
|
647 |
+
a0647
|
648 |
+
a0648
|
649 |
+
a0649
|
650 |
+
a0650
|
651 |
+
a0651
|
652 |
+
a0652
|
653 |
+
a0653
|
654 |
+
a0654
|
655 |
+
a0655
|
656 |
+
a0656
|
657 |
+
a0657
|
658 |
+
a0658
|
659 |
+
a0659
|
660 |
+
a0660
|
661 |
+
a0661
|
662 |
+
a0662
|
663 |
+
a0663
|
664 |
+
a0664
|
665 |
+
a0665
|
666 |
+
a0666
|
667 |
+
a0667
|
668 |
+
a0668
|
669 |
+
a0669
|
670 |
+
a0670
|
671 |
+
a0671
|
672 |
+
a0672
|
673 |
+
a0673
|
674 |
+
a0674
|
675 |
+
a0675
|
676 |
+
a0676
|
677 |
+
a0677
|
678 |
+
a0678
|
679 |
+
a0679
|
680 |
+
a0680
|
681 |
+
a0681
|
682 |
+
a0682
|
683 |
+
a0683
|
684 |
+
a0684
|
685 |
+
a0685
|
686 |
+
a0686
|
687 |
+
a0687
|
688 |
+
a0688
|
689 |
+
a0689
|
690 |
+
a0690
|
691 |
+
a0691
|
692 |
+
a0692
|
693 |
+
a0693
|
694 |
+
a0694
|
695 |
+
a0695
|
696 |
+
a0696
|
697 |
+
a0697
|
698 |
+
a0698
|
699 |
+
a0699
|
700 |
+
a0700
|
701 |
+
a0701
|
702 |
+
a0702
|
703 |
+
a0703
|
704 |
+
a0704
|
705 |
+
a0705
|
706 |
+
a0706
|
707 |
+
a0707
|
708 |
+
a0708
|
709 |
+
a0709
|
710 |
+
a0710
|
711 |
+
a0711
|
712 |
+
a0712
|
713 |
+
a0713
|
714 |
+
a0714
|
715 |
+
a0715
|
716 |
+
a0716
|
717 |
+
a0717
|
718 |
+
a0718
|
719 |
+
a0719
|
720 |
+
a0720
|
721 |
+
a0721
|
722 |
+
a0722
|
723 |
+
a0723
|
724 |
+
a0724
|
725 |
+
a0725
|
726 |
+
a0726
|
727 |
+
a0727
|
728 |
+
a0728
|
729 |
+
a0729
|
730 |
+
a0730
|
731 |
+
a0731
|
732 |
+
a0732
|
733 |
+
a0733
|
734 |
+
a0734
|
735 |
+
a0735
|
736 |
+
a0736
|
737 |
+
a0737
|
738 |
+
a0738
|
739 |
+
a0739
|
740 |
+
a0740
|
741 |
+
a0741
|
742 |
+
a0742
|
743 |
+
a0743
|
744 |
+
a0744
|
745 |
+
a0745
|
746 |
+
a0746
|
747 |
+
a0747
|
748 |
+
a0748
|
749 |
+
a0749
|
750 |
+
a0750
|
751 |
+
a0751
|
752 |
+
a0752
|
753 |
+
a0753
|
754 |
+
a0754
|
755 |
+
a0755
|
756 |
+
a0756
|
757 |
+
a0757
|
758 |
+
a0758
|
759 |
+
a0759
|
760 |
+
a0760
|
761 |
+
a0761
|
762 |
+
a0762
|
763 |
+
a0763
|
764 |
+
a0764
|
765 |
+
a0765
|
766 |
+
a0766
|
767 |
+
a0767
|
768 |
+
a0768
|
769 |
+
a0769
|
770 |
+
a0770
|
771 |
+
a0771
|
772 |
+
a0772
|
773 |
+
a0773
|
774 |
+
a0774
|
775 |
+
a0775
|
776 |
+
a0776
|
777 |
+
a0777
|
778 |
+
a0778
|
779 |
+
a0779
|
780 |
+
a0780
|
781 |
+
a0781
|
782 |
+
a0782
|
783 |
+
a0783
|
784 |
+
a0784
|
785 |
+
a0785
|
786 |
+
a0786
|
787 |
+
a0787
|
788 |
+
a0788
|
789 |
+
a0789
|
790 |
+
a0790
|
791 |
+
a0791
|
792 |
+
a0792
|
793 |
+
a0793
|
794 |
+
a0794
|
795 |
+
a0795
|
796 |
+
a0796
|
797 |
+
a0797
|
798 |
+
a0798
|
799 |
+
a0799
|
800 |
+
a0800
|
801 |
+
a0801
|
802 |
+
a0802
|
803 |
+
a0803
|
804 |
+
a0804
|
805 |
+
a0805
|
806 |
+
a0806
|
807 |
+
a0807
|
808 |
+
a0808
|
809 |
+
a0809
|
810 |
+
a0810
|
811 |
+
a0811
|
812 |
+
a0812
|
813 |
+
a0813
|
814 |
+
a0814
|
815 |
+
a0815
|
816 |
+
a0816
|
817 |
+
a0817
|
818 |
+
a0818
|
819 |
+
a0819
|
820 |
+
a0820
|
821 |
+
a0821
|
822 |
+
a0822
|
823 |
+
a0823
|
824 |
+
a0824
|
825 |
+
a0825
|
826 |
+
a0826
|
827 |
+
a0827
|
828 |
+
a0828
|
829 |
+
a0829
|
830 |
+
a0830
|
831 |
+
a0831
|
832 |
+
a0832
|
833 |
+
a0833
|
834 |
+
a0834
|
835 |
+
a0835
|
836 |
+
a0836
|
837 |
+
a0837
|
838 |
+
a0838
|
839 |
+
a0839
|
840 |
+
a0840
|
841 |
+
a0841
|
842 |
+
a0842
|
843 |
+
a0843
|
844 |
+
a0844
|
845 |
+
a0845
|
846 |
+
a0846
|
847 |
+
a0847
|
848 |
+
a0848
|
849 |
+
a0849
|
850 |
+
a0850
|
851 |
+
a0851
|
852 |
+
a0852
|
853 |
+
a0853
|
854 |
+
a0854
|
855 |
+
a0855
|
856 |
+
a0856
|
857 |
+
a0857
|
858 |
+
a0858
|
859 |
+
a0859
|
860 |
+
a0860
|
861 |
+
a0861
|
862 |
+
a0862
|
863 |
+
a0863
|
864 |
+
a0864
|
865 |
+
a0865
|
866 |
+
a0866
|
867 |
+
a0867
|
868 |
+
a0868
|
869 |
+
a0869
|
870 |
+
a0870
|
871 |
+
a0871
|
872 |
+
a0872
|
873 |
+
a0873
|
874 |
+
a0874
|
875 |
+
a0875
|
876 |
+
a0876
|
877 |
+
a0877
|
878 |
+
a0878
|
879 |
+
a0879
|
880 |
+
a0880
|
881 |
+
a0881
|
882 |
+
a0882
|
883 |
+
a0883
|
884 |
+
a0884
|
885 |
+
a0885
|
886 |
+
a0886
|
887 |
+
a0887
|
888 |
+
a0888
|
889 |
+
a0889
|
890 |
+
a0890
|
891 |
+
a0891
|
892 |
+
a0892
|
893 |
+
a0893
|
894 |
+
a0894
|
895 |
+
a0895
|
896 |
+
a0896
|
897 |
+
a0897
|
898 |
+
a0898
|
899 |
+
a0899
|
900 |
+
a0900
|
901 |
+
a0901
|
902 |
+
a0902
|
903 |
+
a0903
|
904 |
+
a0904
|
905 |
+
a0905
|
906 |
+
a0906
|
907 |
+
a0907
|
908 |
+
a0908
|
909 |
+
a0909
|
910 |
+
a0910
|
911 |
+
a0911
|
912 |
+
a0912
|
913 |
+
a0913
|
914 |
+
a0914
|
915 |
+
a0915
|
916 |
+
a0916
|
917 |
+
a0917
|
918 |
+
a0918
|
919 |
+
a0919
|
920 |
+
a0920
|
921 |
+
a0921
|
922 |
+
a0922
|
923 |
+
a0923
|
924 |
+
a0924
|
925 |
+
a0925
|
926 |
+
a0926
|
927 |
+
a0927
|
928 |
+
a0928
|
929 |
+
a0929
|
930 |
+
a0930
|
931 |
+
a0931
|
932 |
+
a0932
|
933 |
+
a0933
|
934 |
+
a0934
|
935 |
+
a0935
|
936 |
+
a0936
|
937 |
+
a0937
|
938 |
+
a0938
|
939 |
+
a0939
|
940 |
+
a0940
|
941 |
+
a0941
|
942 |
+
a0942
|
943 |
+
a0943
|
944 |
+
a0944
|
945 |
+
a0945
|
946 |
+
a0946
|
947 |
+
a0947
|
948 |
+
a0948
|
949 |
+
a0949
|
950 |
+
a0950
|
951 |
+
a0951
|
952 |
+
a0952
|
953 |
+
a0953
|
954 |
+
a0954
|
955 |
+
a0955
|
956 |
+
a0956
|
957 |
+
a0957
|
958 |
+
a0958
|
959 |
+
a0959
|
960 |
+
a0960
|
961 |
+
a0961
|
962 |
+
a0962
|
963 |
+
a0963
|
964 |
+
a0964
|
965 |
+
a0965
|
966 |
+
a0966
|
967 |
+
a0967
|
968 |
+
a0968
|
969 |
+
a0969
|
970 |
+
a0970
|
971 |
+
a0971
|
972 |
+
a0972
|
973 |
+
a0973
|
974 |
+
a0974
|
975 |
+
a0975
|
976 |
+
a0976
|
977 |
+
a0977
|
978 |
+
a0978
|
979 |
+
a0979
|
980 |
+
a0980
|
981 |
+
a0981
|
982 |
+
a0982
|
983 |
+
a0983
|
984 |
+
a0984
|
985 |
+
a0985
|
986 |
+
a0986
|
987 |
+
a0987
|
988 |
+
a0988
|
989 |
+
a0989
|
990 |
+
a0990
|
991 |
+
a0991
|
992 |
+
a0992
|
993 |
+
a0993
|
994 |
+
a0994
|
995 |
+
a0995
|
996 |
+
a0996
|
997 |
+
a0997
|
998 |
+
a0998
|
999 |
+
a0999
|
1000 |
+
a1000
|
1001 |
+
a1001
|
1002 |
+
a1002
|
1003 |
+
a1003
|
1004 |
+
a1004
|
1005 |
+
a1005
|
1006 |
+
a1006
|
1007 |
+
a1007
|
1008 |
+
a1008
|
1009 |
+
a1009
|
1010 |
+
a1010
|
1011 |
+
a1011
|
1012 |
+
a1012
|
1013 |
+
a1013
|
1014 |
+
a1014
|
1015 |
+
a1015
|
1016 |
+
a1016
|
1017 |
+
a1017
|
1018 |
+
a1018
|
1019 |
+
a1019
|
1020 |
+
a1020
|
1021 |
+
a1021
|
1022 |
+
a1022
|
1023 |
+
a1023
|
1024 |
+
a1024
|
1025 |
+
a1025
|
1026 |
+
a1026
|
1027 |
+
a1027
|
1028 |
+
a1028
|
1029 |
+
a1029
|
1030 |
+
a1030
|
1031 |
+
a1031
|
1032 |
+
a1032
|
1033 |
+
a1033
|
1034 |
+
a1034
|
1035 |
+
a1035
|
1036 |
+
a1036
|
1037 |
+
a1037
|
1038 |
+
a1038
|
1039 |
+
a1039
|
1040 |
+
a1040
|
1041 |
+
a1041
|
1042 |
+
a1042
|
1043 |
+
a1043
|
1044 |
+
a1044
|
1045 |
+
a1045
|
1046 |
+
a1046
|
1047 |
+
a1047
|
1048 |
+
a1048
|
1049 |
+
a1049
|
1050 |
+
a1050
|
1051 |
+
a1051
|
1052 |
+
a1052
|
1053 |
+
a1053
|
1054 |
+
a1054
|
1055 |
+
a1055
|
1056 |
+
a1056
|
1057 |
+
a1057
|
1058 |
+
a1058
|
1059 |
+
a1059
|
1060 |
+
a1060
|
1061 |
+
a1061
|
1062 |
+
a1062
|
1063 |
+
a1063
|
1064 |
+
a1064
|
1065 |
+
a1065
|
1066 |
+
a1066
|
1067 |
+
a1067
|
1068 |
+
a1068
|
1069 |
+
a1069
|
1070 |
+
a1070
|
1071 |
+
a1071
|
1072 |
+
a1072
|
1073 |
+
a1073
|
1074 |
+
a1074
|
1075 |
+
a1075
|
1076 |
+
a1076
|
1077 |
+
a1077
|
1078 |
+
a1078
|
1079 |
+
a1079
|
1080 |
+
a1080
|
1081 |
+
a1081
|
1082 |
+
a1082
|
1083 |
+
a1083
|
1084 |
+
a1084
|
1085 |
+
a1085
|
1086 |
+
a1086
|
1087 |
+
a1087
|
1088 |
+
a1088
|
1089 |
+
a1089
|
1090 |
+
a1090
|
1091 |
+
a1091
|
1092 |
+
a1092
|
1093 |
+
a1093
|
1094 |
+
a1094
|
1095 |
+
a1095
|
1096 |
+
a1096
|
1097 |
+
a1097
|
1098 |
+
a1098
|
1099 |
+
a1099
|
1100 |
+
a1100
|
1101 |
+
a1101
|
1102 |
+
a1102
|
1103 |
+
a1103
|
1104 |
+
a1104
|
1105 |
+
a1105
|
1106 |
+
a1106
|
1107 |
+
a1107
|
1108 |
+
a1108
|
1109 |
+
a1109
|
1110 |
+
a1110
|
1111 |
+
a1111
|
1112 |
+
a1112
|
1113 |
+
a1113
|
1114 |
+
a1114
|
1115 |
+
a1115
|
1116 |
+
a1116
|
1117 |
+
a1117
|
1118 |
+
a1118
|
1119 |
+
a1119
|
1120 |
+
a1120
|
1121 |
+
a1121
|
1122 |
+
a1122
|
1123 |
+
a1123
|
1124 |
+
a1124
|
1125 |
+
a1125
|
1126 |
+
a1126
|
1127 |
+
a1127
|
1128 |
+
a1128
|
1129 |
+
a1129
|
1130 |
+
a1130
|
1131 |
+
a1131
|
1132 |
+
a1132
|
1133 |
+
a1133
|
1134 |
+
a1134
|
1135 |
+
a1135
|
1136 |
+
a1136
|
1137 |
+
a1137
|
1138 |
+
a1138
|
1139 |
+
a1139
|
1140 |
+
a1140
|
1141 |
+
a1141
|
1142 |
+
a1142
|
1143 |
+
a1143
|
1144 |
+
a1144
|
1145 |
+
a1145
|
1146 |
+
a1146
|
1147 |
+
a1147
|
1148 |
+
a1148
|
1149 |
+
a1149
|
1150 |
+
a1150
|
1151 |
+
a1151
|
1152 |
+
a1152
|
1153 |
+
a1153
|
1154 |
+
a1154
|
1155 |
+
a1155
|
1156 |
+
a1156
|
1157 |
+
a1157
|
1158 |
+
a1158
|
1159 |
+
a1159
|
1160 |
+
a1160
|
1161 |
+
a1161
|
1162 |
+
a1162
|
1163 |
+
a1163
|
1164 |
+
a1164
|
1165 |
+
a1165
|
1166 |
+
a1166
|
1167 |
+
a1167
|
1168 |
+
a1168
|
1169 |
+
a1169
|
1170 |
+
a1170
|
1171 |
+
a1171
|
1172 |
+
a1172
|
1173 |
+
a1173
|
1174 |
+
a1174
|
1175 |
+
a1175
|
1176 |
+
a1176
|
1177 |
+
a1177
|
1178 |
+
a1178
|
1179 |
+
a1179
|
1180 |
+
a1180
|
1181 |
+
a1181
|
1182 |
+
a1182
|
1183 |
+
a1183
|
1184 |
+
a1184
|
1185 |
+
a1185
|
1186 |
+
a1186
|
1187 |
+
a1187
|
1188 |
+
a1188
|
1189 |
+
a1189
|
1190 |
+
a1190
|
1191 |
+
a1191
|
1192 |
+
a1192
|
1193 |
+
a1193
|
1194 |
+
a1194
|
1195 |
+
a1195
|
1196 |
+
a1196
|
1197 |
+
a1197
|
1198 |
+
a1198
|
1199 |
+
a1199
|
1200 |
+
a1200
|
1201 |
+
a1201
|
1202 |
+
a1202
|
1203 |
+
a1203
|
1204 |
+
a1204
|
1205 |
+
a1205
|
1206 |
+
a1206
|
1207 |
+
a1207
|
1208 |
+
a1208
|
1209 |
+
a1209
|
1210 |
+
a1210
|
1211 |
+
a1211
|
1212 |
+
a1212
|
1213 |
+
a1213
|
1214 |
+
a1214
|
1215 |
+
a1215
|
1216 |
+
a1216
|
1217 |
+
a1217
|
1218 |
+
a1218
|
1219 |
+
a1219
|
1220 |
+
a1220
|
1221 |
+
a1221
|
1222 |
+
a1222
|
1223 |
+
a1223
|
1224 |
+
a1224
|
1225 |
+
a1225
|
1226 |
+
a1226
|
1227 |
+
a1227
|
1228 |
+
a1228
|
1229 |
+
a1229
|
1230 |
+
a1230
|
1231 |
+
a1231
|
1232 |
+
a1232
|
1233 |
+
a1233
|
1234 |
+
a1234
|
1235 |
+
a1235
|
1236 |
+
a1236
|
1237 |
+
a1237
|
1238 |
+
a1238
|
1239 |
+
a1239
|
1240 |
+
a1240
|
1241 |
+
a1241
|
1242 |
+
a1242
|
1243 |
+
a1243
|
1244 |
+
a1244
|
1245 |
+
a1245
|
1246 |
+
a1246
|
1247 |
+
a1247
|
1248 |
+
a1248
|
1249 |
+
a1249
|
1250 |
+
a1250
|
1251 |
+
a1251
|
1252 |
+
a1252
|
1253 |
+
a1253
|
1254 |
+
a1254
|
1255 |
+
a1255
|
1256 |
+
a1256
|
1257 |
+
a1257
|
1258 |
+
a1258
|
1259 |
+
a1259
|
1260 |
+
a1260
|
1261 |
+
a1261
|
1262 |
+
a1262
|
1263 |
+
a1263
|
1264 |
+
a1264
|
1265 |
+
a1265
|
1266 |
+
a1266
|
1267 |
+
a1267
|
1268 |
+
a1268
|
1269 |
+
a1269
|
1270 |
+
a1270
|
1271 |
+
a1271
|
1272 |
+
a1272
|
1273 |
+
a1273
|
1274 |
+
a1274
|
1275 |
+
a1275
|
1276 |
+
a1276
|
1277 |
+
a1277
|
1278 |
+
a1278
|
1279 |
+
a1279
|
1280 |
+
a1280
|
1281 |
+
a1281
|
1282 |
+
a1282
|
1283 |
+
a1283
|
1284 |
+
a1284
|
1285 |
+
a1285
|
1286 |
+
a1286
|
1287 |
+
a1287
|
1288 |
+
a1288
|
1289 |
+
a1289
|
1290 |
+
a1290
|
1291 |
+
a1291
|
1292 |
+
a1292
|
1293 |
+
a1293
|
1294 |
+
a1294
|
1295 |
+
a1295
|
1296 |
+
a1296
|
1297 |
+
a1297
|
1298 |
+
a1298
|
1299 |
+
a1299
|
1300 |
+
a1300
|
1301 |
+
a1301
|
1302 |
+
a1302
|
1303 |
+
a1303
|
1304 |
+
a1304
|
1305 |
+
a1305
|
1306 |
+
a1306
|
1307 |
+
a1307
|
1308 |
+
a1308
|
1309 |
+
a1309
|
1310 |
+
a1310
|
1311 |
+
a1311
|
1312 |
+
a1312
|
1313 |
+
a1313
|
1314 |
+
a1314
|
1315 |
+
a1315
|
1316 |
+
a1316
|
1317 |
+
a1317
|
1318 |
+
a1318
|
1319 |
+
a1319
|
1320 |
+
a1320
|
1321 |
+
a1321
|
1322 |
+
a1322
|
1323 |
+
a1323
|
1324 |
+
a1324
|
1325 |
+
a1325
|
1326 |
+
a1326
|
1327 |
+
a1327
|
1328 |
+
a1328
|
1329 |
+
a1329
|
1330 |
+
a1330
|
1331 |
+
a1331
|
1332 |
+
a1332
|
1333 |
+
a1333
|
1334 |
+
a1334
|
1335 |
+
a1335
|
1336 |
+
a1336
|
1337 |
+
a1337
|
1338 |
+
a1338
|
1339 |
+
a1339
|
1340 |
+
a1340
|
1341 |
+
a1341
|
1342 |
+
a1342
|
1343 |
+
a1343
|
1344 |
+
a1344
|
1345 |
+
a1345
|
1346 |
+
a1346
|
1347 |
+
a1347
|
1348 |
+
a1348
|
1349 |
+
a1349
|
1350 |
+
a1350
|
1351 |
+
a1351
|
1352 |
+
a1352
|
1353 |
+
a1353
|
1354 |
+
a1354
|
1355 |
+
a1355
|
1356 |
+
a1356
|
1357 |
+
a1357
|
1358 |
+
a1358
|
1359 |
+
a1359
|
1360 |
+
a1360
|
1361 |
+
a1361
|
1362 |
+
a1362
|
1363 |
+
a1363
|
1364 |
+
a1364
|
1365 |
+
a1365
|
1366 |
+
a1366
|
1367 |
+
a1367
|
1368 |
+
a1368
|
1369 |
+
a1369
|
1370 |
+
a1370
|
1371 |
+
a1371
|
1372 |
+
a1372
|
1373 |
+
a1373
|
1374 |
+
a1374
|
1375 |
+
a1375
|
1376 |
+
a1376
|
1377 |
+
a1377
|
1378 |
+
a1378
|
1379 |
+
a1379
|
1380 |
+
a1380
|
1381 |
+
a1381
|
1382 |
+
a1382
|
1383 |
+
a1383
|
1384 |
+
a1384
|
1385 |
+
a1385
|
1386 |
+
a1386
|
1387 |
+
a1387
|
1388 |
+
a1388
|
1389 |
+
a1389
|
1390 |
+
a1390
|
1391 |
+
a1391
|
1392 |
+
a1392
|
1393 |
+
a1393
|
1394 |
+
a1394
|
1395 |
+
a1395
|
1396 |
+
a1396
|
1397 |
+
a1397
|
1398 |
+
a1398
|
1399 |
+
a1399
|
1400 |
+
a1400
|
1401 |
+
a1401
|
1402 |
+
a1402
|
1403 |
+
a1403
|
1404 |
+
a1404
|
1405 |
+
a1405
|
1406 |
+
a1406
|
1407 |
+
a1407
|
1408 |
+
a1408
|
1409 |
+
a1409
|
1410 |
+
a1410
|
1411 |
+
a1411
|
1412 |
+
a1412
|
1413 |
+
a1413
|
1414 |
+
a1414
|
1415 |
+
a1415
|
1416 |
+
a1416
|
1417 |
+
a1417
|
1418 |
+
a1418
|
1419 |
+
a1419
|
1420 |
+
a1420
|
1421 |
+
a1421
|
1422 |
+
a1422
|
1423 |
+
a1423
|
1424 |
+
a1424
|
1425 |
+
a1425
|
1426 |
+
a1426
|
1427 |
+
a1427
|
1428 |
+
a1428
|
1429 |
+
a1429
|
1430 |
+
a1430
|
1431 |
+
a1431
|
1432 |
+
a1432
|
1433 |
+
a1433
|
1434 |
+
a1434
|
1435 |
+
a1435
|
1436 |
+
a1436
|
1437 |
+
a1437
|
1438 |
+
a1438
|
1439 |
+
a1439
|
1440 |
+
a1440
|
1441 |
+
a1441
|
1442 |
+
a1442
|
1443 |
+
a1443
|
1444 |
+
a1444
|
1445 |
+
a1445
|
1446 |
+
a1446
|
1447 |
+
a1447
|
1448 |
+
a1448
|
1449 |
+
a1449
|
1450 |
+
a1450
|
1451 |
+
a1451
|
1452 |
+
a1452
|
1453 |
+
a1453
|
1454 |
+
a1454
|
1455 |
+
a1455
|
1456 |
+
a1456
|
1457 |
+
a1457
|
1458 |
+
a1458
|
1459 |
+
a1459
|
1460 |
+
a1460
|
1461 |
+
a1461
|
1462 |
+
a1462
|
1463 |
+
a1463
|
1464 |
+
a1464
|
1465 |
+
a1465
|
1466 |
+
a1466
|
1467 |
+
a1467
|
1468 |
+
a1468
|
1469 |
+
a1469
|
1470 |
+
a1470
|
1471 |
+
a1471
|
1472 |
+
a1472
|
1473 |
+
a1473
|
1474 |
+
a1474
|
1475 |
+
a1475
|
1476 |
+
a1476
|
1477 |
+
a1477
|
1478 |
+
a1478
|
1479 |
+
a1479
|
1480 |
+
a1480
|
1481 |
+
a1481
|
1482 |
+
a1482
|
1483 |
+
a1483
|
1484 |
+
a1484
|
1485 |
+
a1485
|
1486 |
+
a1486
|
1487 |
+
a1487
|
1488 |
+
a1488
|
1489 |
+
a1489
|
1490 |
+
a1490
|
1491 |
+
a1491
|
1492 |
+
a1492
|
1493 |
+
a1493
|
1494 |
+
a1494
|
1495 |
+
a1495
|
1496 |
+
a1496
|
1497 |
+
a1497
|
1498 |
+
a1498
|
1499 |
+
a1499
|
1500 |
+
a1500
|
1501 |
+
a1501
|
1502 |
+
a1502
|
1503 |
+
a1503
|
1504 |
+
a1504
|
1505 |
+
a1505
|
1506 |
+
a1506
|
1507 |
+
a1507
|
1508 |
+
a1508
|
1509 |
+
a1509
|
1510 |
+
a1510
|
1511 |
+
a1511
|
1512 |
+
a1512
|
1513 |
+
a1513
|
1514 |
+
a1514
|
1515 |
+
a1515
|
1516 |
+
a1516
|
1517 |
+
a1517
|
1518 |
+
a1518
|
1519 |
+
a1519
|
1520 |
+
a1520
|
1521 |
+
a1521
|
1522 |
+
a1522
|
1523 |
+
a1523
|
1524 |
+
a1524
|
1525 |
+
a1525
|
1526 |
+
a1526
|
1527 |
+
a1527
|
1528 |
+
a1528
|
1529 |
+
a1529
|
1530 |
+
a1530
|
1531 |
+
a1531
|
1532 |
+
a1532
|
1533 |
+
a1533
|
1534 |
+
a1534
|
1535 |
+
a1535
|
1536 |
+
a1536
|
1537 |
+
a1537
|
1538 |
+
a1538
|
1539 |
+
a1539
|
1540 |
+
a1540
|
1541 |
+
a1541
|
1542 |
+
a1542
|
1543 |
+
a1543
|
1544 |
+
a1544
|
1545 |
+
a1545
|
1546 |
+
a1546
|
1547 |
+
a1547
|
1548 |
+
a1548
|
1549 |
+
a1549
|
1550 |
+
a1550
|
1551 |
+
a1551
|
1552 |
+
a1552
|
1553 |
+
a1553
|
1554 |
+
a1554
|
1555 |
+
a1555
|
1556 |
+
a1556
|
1557 |
+
a1557
|
1558 |
+
a1558
|
1559 |
+
a1559
|
1560 |
+
a1560
|
1561 |
+
a1561
|
1562 |
+
a1562
|
1563 |
+
a1563
|
1564 |
+
a1564
|
1565 |
+
a1565
|
1566 |
+
a1566
|
1567 |
+
a1567
|
1568 |
+
a1568
|
1569 |
+
a1569
|
1570 |
+
a1570
|
1571 |
+
a1571
|
1572 |
+
a1572
|
1573 |
+
a1573
|
1574 |
+
a1574
|
1575 |
+
a1575
|
1576 |
+
a1576
|
1577 |
+
a1577
|
1578 |
+
a1578
|
1579 |
+
a1579
|
1580 |
+
a1580
|
1581 |
+
a1581
|
1582 |
+
a1582
|
1583 |
+
a1583
|
1584 |
+
a1584
|
1585 |
+
a1585
|
1586 |
+
a1586
|
1587 |
+
a1587
|
1588 |
+
a1588
|
1589 |
+
a1589
|
1590 |
+
a1590
|
1591 |
+
a1591
|
1592 |
+
a1592
|
1593 |
+
a1593
|
1594 |
+
a1594
|
1595 |
+
a1595
|
1596 |
+
a1596
|
1597 |
+
a1597
|
1598 |
+
a1598
|
1599 |
+
a1599
|
1600 |
+
a1600
|
1601 |
+
a1601
|
1602 |
+
a1602
|
1603 |
+
a1603
|
1604 |
+
a1604
|
1605 |
+
a1605
|
1606 |
+
a1606
|
1607 |
+
a1607
|
1608 |
+
a1608
|
1609 |
+
a1609
|
1610 |
+
a1610
|
1611 |
+
a1611
|
1612 |
+
a1612
|
1613 |
+
a1613
|
1614 |
+
a1614
|
1615 |
+
a1615
|
1616 |
+
a1616
|
1617 |
+
a1617
|
1618 |
+
a1618
|
1619 |
+
a1619
|
1620 |
+
a1620
|
1621 |
+
a1621
|
1622 |
+
a1622
|
1623 |
+
a1623
|
1624 |
+
a1624
|
1625 |
+
a1625
|
1626 |
+
a1626
|
1627 |
+
a1627
|
1628 |
+
a1628
|
1629 |
+
a1629
|
1630 |
+
a1630
|
1631 |
+
a1631
|
1632 |
+
a1632
|
1633 |
+
a1633
|
1634 |
+
a1634
|
1635 |
+
a1635
|
1636 |
+
a1636
|
1637 |
+
a1637
|
1638 |
+
a1638
|
1639 |
+
a1639
|
1640 |
+
a1640
|
1641 |
+
a1641
|
1642 |
+
a1642
|
1643 |
+
a1643
|
1644 |
+
a1644
|
1645 |
+
a1645
|
1646 |
+
a1646
|
1647 |
+
a1647
|
1648 |
+
a1648
|
1649 |
+
a1649
|
1650 |
+
a1650
|
1651 |
+
a1651
|
1652 |
+
a1652
|
1653 |
+
a1653
|
1654 |
+
a1654
|
1655 |
+
a1655
|
1656 |
+
a1656
|
1657 |
+
a1657
|
1658 |
+
a1658
|
1659 |
+
a1659
|
1660 |
+
a1660
|
1661 |
+
a1661
|
1662 |
+
a1662
|
1663 |
+
a1663
|
1664 |
+
a1664
|
1665 |
+
a1665
|
1666 |
+
a1666
|
1667 |
+
a1667
|
1668 |
+
a1668
|
1669 |
+
a1669
|
1670 |
+
a1670
|
1671 |
+
a1671
|
1672 |
+
a1672
|
1673 |
+
a1673
|
1674 |
+
a1674
|
1675 |
+
a1675
|
1676 |
+
a1676
|
1677 |
+
a1677
|
1678 |
+
a1678
|
1679 |
+
a1679
|
1680 |
+
a1680
|
1681 |
+
a1681
|
1682 |
+
a1682
|
1683 |
+
a1683
|
1684 |
+
a1684
|
1685 |
+
a1685
|
1686 |
+
a1686
|
1687 |
+
a1687
|
1688 |
+
a1688
|
1689 |
+
a1689
|
1690 |
+
a1690
|
1691 |
+
a1691
|
1692 |
+
a1692
|
1693 |
+
a1693
|
1694 |
+
a1694
|
1695 |
+
a1695
|
1696 |
+
a1696
|
1697 |
+
a1697
|
1698 |
+
a1698
|
1699 |
+
a1699
|
1700 |
+
a1700
|
1701 |
+
a1701
|
1702 |
+
a1702
|
1703 |
+
a1703
|
1704 |
+
a1704
|
1705 |
+
a1705
|
1706 |
+
a1706
|
1707 |
+
a1707
|
1708 |
+
a1708
|
1709 |
+
a1709
|
1710 |
+
a1710
|
1711 |
+
a1711
|
1712 |
+
a1712
|
1713 |
+
a1713
|
1714 |
+
a1714
|
1715 |
+
a1715
|
1716 |
+
a1716
|
1717 |
+
a1717
|
1718 |
+
a1718
|
1719 |
+
a1719
|
1720 |
+
a1720
|
1721 |
+
a1721
|
1722 |
+
a1722
|
1723 |
+
a1723
|
1724 |
+
a1724
|
1725 |
+
a1725
|
1726 |
+
a1726
|
1727 |
+
a1727
|
1728 |
+
a1728
|
1729 |
+
a1729
|
1730 |
+
a1730
|
1731 |
+
a1731
|
1732 |
+
a1732
|
1733 |
+
a1733
|
1734 |
+
a1734
|
1735 |
+
a1735
|
1736 |
+
a1736
|
1737 |
+
a1737
|
1738 |
+
a1738
|
1739 |
+
a1739
|
1740 |
+
a1740
|
1741 |
+
a1741
|
1742 |
+
a1742
|
1743 |
+
a1743
|
1744 |
+
a1744
|
1745 |
+
a1745
|
1746 |
+
a1746
|
1747 |
+
a1747
|
1748 |
+
a1748
|
1749 |
+
a1749
|
1750 |
+
a1750
|
1751 |
+
a1751
|
1752 |
+
a1752
|
1753 |
+
a1753
|
1754 |
+
a1754
|
1755 |
+
a1755
|
1756 |
+
a1756
|
1757 |
+
a1757
|
1758 |
+
a1758
|
1759 |
+
a1759
|
1760 |
+
a1760
|
1761 |
+
a1761
|
1762 |
+
a1762
|
1763 |
+
a1763
|
1764 |
+
a1764
|
1765 |
+
a1765
|
1766 |
+
a1766
|
1767 |
+
a1767
|
1768 |
+
a1768
|
1769 |
+
a1769
|
1770 |
+
a1770
|
1771 |
+
a1771
|
1772 |
+
a1772
|
1773 |
+
a1773
|
1774 |
+
a1774
|
1775 |
+
a1775
|
1776 |
+
a1776
|
1777 |
+
a1777
|
1778 |
+
a1778
|
1779 |
+
a1779
|
1780 |
+
a1780
|
1781 |
+
a1781
|
1782 |
+
a1782
|
1783 |
+
a1783
|
1784 |
+
a1784
|
1785 |
+
a1785
|
1786 |
+
a1786
|
1787 |
+
a1787
|
1788 |
+
a1788
|
1789 |
+
a1789
|
1790 |
+
a1790
|
1791 |
+
a1791
|
1792 |
+
a1792
|
1793 |
+
a1793
|
1794 |
+
a1794
|
1795 |
+
a1795
|
1796 |
+
a1796
|
1797 |
+
a1797
|
1798 |
+
a1798
|
1799 |
+
a1799
|
1800 |
+
a1800
|
1801 |
+
a1801
|
1802 |
+
a1802
|
1803 |
+
a1803
|
1804 |
+
a1804
|
1805 |
+
a1805
|
1806 |
+
a1806
|
1807 |
+
a1807
|
1808 |
+
a1808
|
1809 |
+
a1809
|
1810 |
+
a1810
|
1811 |
+
a1811
|
1812 |
+
a1812
|
1813 |
+
a1813
|
1814 |
+
a1814
|
1815 |
+
a1815
|
1816 |
+
a1816
|
1817 |
+
a1817
|
1818 |
+
a1818
|
1819 |
+
a1819
|
1820 |
+
a1820
|
1821 |
+
a1821
|
1822 |
+
a1822
|
1823 |
+
a1823
|
1824 |
+
a1824
|
1825 |
+
a1825
|
1826 |
+
a1826
|
1827 |
+
a1827
|
1828 |
+
a1828
|
1829 |
+
a1829
|
1830 |
+
a1830
|
1831 |
+
a1831
|
1832 |
+
a1832
|
1833 |
+
a1833
|
1834 |
+
a1834
|
1835 |
+
a1835
|
1836 |
+
a1836
|
1837 |
+
a1837
|
1838 |
+
a1838
|
1839 |
+
a1839
|
1840 |
+
a1840
|
1841 |
+
a1841
|
1842 |
+
a1842
|
1843 |
+
a1843
|
1844 |
+
a1844
|
1845 |
+
a1845
|
1846 |
+
a1846
|
1847 |
+
a1847
|
1848 |
+
a1848
|
1849 |
+
a1849
|
1850 |
+
a1850
|
1851 |
+
a1851
|
1852 |
+
a1852
|
1853 |
+
a1853
|
1854 |
+
a1854
|
1855 |
+
a1855
|
1856 |
+
a1856
|
1857 |
+
a1857
|
1858 |
+
a1858
|
1859 |
+
a1859
|
1860 |
+
a1860
|
1861 |
+
a1861
|
1862 |
+
a1862
|
1863 |
+
a1863
|
1864 |
+
a1864
|
1865 |
+
a1865
|
1866 |
+
a1866
|
1867 |
+
a1867
|
1868 |
+
a1868
|
1869 |
+
a1869
|
1870 |
+
a1870
|
1871 |
+
a1871
|
1872 |
+
a1872
|
1873 |
+
a1873
|
1874 |
+
a1874
|
1875 |
+
a1875
|
1876 |
+
a1876
|
1877 |
+
a1877
|
1878 |
+
a1878
|
1879 |
+
a1879
|
1880 |
+
a1880
|
1881 |
+
a1881
|
1882 |
+
a1882
|
1883 |
+
a1883
|
1884 |
+
a1884
|
1885 |
+
a1885
|
1886 |
+
a1886
|
1887 |
+
a1887
|
1888 |
+
a1888
|
1889 |
+
a1889
|
1890 |
+
a1890
|
1891 |
+
a1891
|
1892 |
+
a1892
|
1893 |
+
a1893
|
1894 |
+
a1894
|
1895 |
+
a1895
|
1896 |
+
a1896
|
1897 |
+
a1897
|
1898 |
+
a1898
|
1899 |
+
a1899
|
1900 |
+
a1900
|
1901 |
+
a1901
|
1902 |
+
a1902
|
1903 |
+
a1903
|
1904 |
+
a1904
|
1905 |
+
a1905
|
1906 |
+
a1906
|
1907 |
+
a1907
|
1908 |
+
a1908
|
1909 |
+
a1909
|
1910 |
+
a1910
|
1911 |
+
a1911
|
1912 |
+
a1912
|
1913 |
+
a1913
|
1914 |
+
a1914
|
1915 |
+
a1915
|
1916 |
+
a1916
|
1917 |
+
a1917
|
1918 |
+
a1918
|
1919 |
+
a1919
|
1920 |
+
a1920
|
1921 |
+
a1921
|
1922 |
+
a1922
|
1923 |
+
a1923
|
1924 |
+
a1924
|
1925 |
+
a1925
|
1926 |
+
a1926
|
1927 |
+
a1927
|
1928 |
+
a1928
|
1929 |
+
a1929
|
1930 |
+
a1930
|
1931 |
+
a1931
|
1932 |
+
a1932
|
1933 |
+
a1933
|
1934 |
+
a1934
|
1935 |
+
a1935
|
1936 |
+
a1936
|
1937 |
+
a1937
|
1938 |
+
a1938
|
1939 |
+
a1939
|
1940 |
+
a1940
|
1941 |
+
a1941
|
1942 |
+
a1942
|
1943 |
+
a1943
|
1944 |
+
a1944
|
1945 |
+
a1945
|
1946 |
+
a1946
|
1947 |
+
a1947
|
1948 |
+
a1948
|
1949 |
+
a1949
|
1950 |
+
a1950
|
1951 |
+
a1951
|
1952 |
+
a1952
|
1953 |
+
a1953
|
1954 |
+
a1954
|
1955 |
+
a1955
|
1956 |
+
a1956
|
1957 |
+
a1957
|
1958 |
+
a1958
|
1959 |
+
a1959
|
1960 |
+
a1960
|
1961 |
+
a1961
|
1962 |
+
a1962
|
1963 |
+
a1963
|
1964 |
+
a1964
|
1965 |
+
a1965
|
1966 |
+
a1966
|
1967 |
+
a1967
|
1968 |
+
a1968
|
1969 |
+
a1969
|
1970 |
+
a1970
|
1971 |
+
a1971
|
1972 |
+
a1972
|
1973 |
+
a1973
|
1974 |
+
a1974
|
1975 |
+
a1975
|
1976 |
+
a1976
|
1977 |
+
a1977
|
1978 |
+
a1978
|
1979 |
+
a1979
|
1980 |
+
a1980
|
1981 |
+
a1981
|
1982 |
+
a1982
|
1983 |
+
a1983
|
1984 |
+
a1984
|
1985 |
+
a1985
|
1986 |
+
a1986
|
1987 |
+
a1987
|
1988 |
+
a1988
|
1989 |
+
a1989
|
1990 |
+
a1990
|
1991 |
+
a1991
|
1992 |
+
a1992
|
1993 |
+
a1993
|
1994 |
+
a1994
|
1995 |
+
a1995
|
1996 |
+
a1996
|
1997 |
+
a1997
|
1998 |
+
a1998
|
1999 |
+
a1999
|
2000 |
+
a2000
|
2001 |
+
a2001
|
2002 |
+
a2002
|
2003 |
+
a2003
|
2004 |
+
a2004
|
2005 |
+
a2005
|
2006 |
+
a2006
|
2007 |
+
a2007
|
2008 |
+
a2008
|
2009 |
+
a2009
|
2010 |
+
a2010
|
2011 |
+
a2011
|
2012 |
+
a2012
|
2013 |
+
a2013
|
2014 |
+
a2014
|
2015 |
+
a2015
|
2016 |
+
a2016
|
2017 |
+
a2017
|
2018 |
+
a2018
|
2019 |
+
a2019
|
2020 |
+
a2020
|
2021 |
+
a2021
|
2022 |
+
a2022
|
2023 |
+
a2023
|
2024 |
+
a2024
|
2025 |
+
a2025
|
2026 |
+
a2026
|
2027 |
+
a2027
|
2028 |
+
a2028
|
2029 |
+
a2029
|
2030 |
+
a2030
|
2031 |
+
a2031
|
2032 |
+
a2032
|
2033 |
+
a2033
|
2034 |
+
a2034
|
2035 |
+
a2035
|
2036 |
+
a2036
|
2037 |
+
a2037
|
2038 |
+
a2038
|
2039 |
+
a2039
|
2040 |
+
a2040
|
2041 |
+
a2041
|
2042 |
+
a2042
|
2043 |
+
a2043
|
2044 |
+
a2044
|
2045 |
+
a2045
|
2046 |
+
a2046
|
2047 |
+
a2047
|
2048 |
+
a2048
|
2049 |
+
a2049
|
2050 |
+
a2050
|
2051 |
+
a2051
|
2052 |
+
a2052
|
2053 |
+
a2053
|
2054 |
+
a2054
|
2055 |
+
a2055
|
2056 |
+
a2056
|
2057 |
+
a2057
|
2058 |
+
a2058
|
2059 |
+
a2059
|
2060 |
+
a2060
|
2061 |
+
a2061
|
2062 |
+
a2062
|
2063 |
+
a2063
|
2064 |
+
a2064
|
2065 |
+
a2065
|
2066 |
+
a2066
|
2067 |
+
a2067
|
2068 |
+
a2068
|
2069 |
+
a2069
|
2070 |
+
a2070
|
2071 |
+
a2071
|
2072 |
+
a2072
|
2073 |
+
a2073
|
2074 |
+
a2074
|
2075 |
+
a2075
|
2076 |
+
a2076
|
2077 |
+
a2077
|
2078 |
+
a2078
|
2079 |
+
a2079
|
2080 |
+
a2080
|
2081 |
+
a2081
|
2082 |
+
a2082
|
2083 |
+
a2083
|
2084 |
+
a2084
|
2085 |
+
a2085
|
2086 |
+
a2086
|
2087 |
+
a2087
|
2088 |
+
a2088
|
2089 |
+
a2089
|
2090 |
+
a2090
|
2091 |
+
a2091
|
2092 |
+
a2092
|
2093 |
+
a2093
|
2094 |
+
a2094
|
2095 |
+
a2095
|
2096 |
+
a2096
|
2097 |
+
a2097
|
2098 |
+
a2098
|
2099 |
+
a2099
|
2100 |
+
a2100
|
2101 |
+
a2101
|
2102 |
+
a2102
|
2103 |
+
a2103
|
2104 |
+
a2104
|
2105 |
+
a2105
|
2106 |
+
a2106
|
2107 |
+
a2107
|
2108 |
+
a2108
|
2109 |
+
a2109
|
2110 |
+
a2110
|
2111 |
+
a2111
|
2112 |
+
a2112
|
2113 |
+
a2113
|
2114 |
+
a2114
|
2115 |
+
a2115
|
2116 |
+
a2116
|
2117 |
+
a2117
|
2118 |
+
a2118
|
2119 |
+
a2119
|
2120 |
+
a2120
|
2121 |
+
a2121
|
2122 |
+
a2122
|
2123 |
+
a2123
|
2124 |
+
a2124
|
2125 |
+
a2125
|
2126 |
+
a2126
|
2127 |
+
a2127
|
2128 |
+
a2128
|
2129 |
+
a2129
|
2130 |
+
a2130
|
2131 |
+
a2131
|
2132 |
+
a2132
|
2133 |
+
a2133
|
2134 |
+
a2134
|
2135 |
+
a2135
|
2136 |
+
a2136
|
2137 |
+
a2137
|
2138 |
+
a2138
|
2139 |
+
a2139
|
2140 |
+
a2140
|
2141 |
+
a2141
|
2142 |
+
a2142
|
2143 |
+
a2143
|
2144 |
+
a2144
|
2145 |
+
a2145
|
2146 |
+
a2146
|
2147 |
+
a2147
|
2148 |
+
a2148
|
2149 |
+
a2149
|
2150 |
+
a2150
|
2151 |
+
a2151
|
2152 |
+
a2152
|
2153 |
+
a2153
|
2154 |
+
a2154
|
2155 |
+
a2155
|
2156 |
+
a2156
|
2157 |
+
a2157
|
2158 |
+
a2158
|
2159 |
+
a2159
|
2160 |
+
a2160
|
2161 |
+
a2161
|
2162 |
+
a2162
|
2163 |
+
a2163
|
2164 |
+
a2164
|
2165 |
+
a2165
|
2166 |
+
a2166
|
2167 |
+
a2167
|
2168 |
+
a2168
|
2169 |
+
a2169
|
2170 |
+
a2170
|
2171 |
+
a2171
|
2172 |
+
a2172
|
2173 |
+
a2173
|
2174 |
+
a2174
|
2175 |
+
a2175
|
2176 |
+
a2176
|
2177 |
+
a2177
|
2178 |
+
a2178
|
2179 |
+
a2179
|
2180 |
+
a2180
|
2181 |
+
a2181
|
2182 |
+
a2182
|
2183 |
+
a2183
|
2184 |
+
a2184
|
2185 |
+
a2185
|
2186 |
+
a2186
|
2187 |
+
a2187
|
2188 |
+
a2188
|
2189 |
+
a2189
|
2190 |
+
a2190
|
2191 |
+
a2191
|
2192 |
+
a2192
|
2193 |
+
a2193
|
2194 |
+
a2194
|
2195 |
+
a2195
|
2196 |
+
a2196
|
2197 |
+
a2197
|
2198 |
+
a2198
|
2199 |
+
a2199
|
2200 |
+
a2200
|
2201 |
+
a2201
|
2202 |
+
a2202
|
2203 |
+
a2203
|
2204 |
+
a2204
|
2205 |
+
a2205
|
2206 |
+
a2206
|
2207 |
+
a2207
|
2208 |
+
a2208
|
2209 |
+
a2209
|
2210 |
+
a2210
|
2211 |
+
a2211
|
2212 |
+
a2212
|
2213 |
+
a2213
|
2214 |
+
a2214
|
2215 |
+
a2215
|
2216 |
+
a2216
|
2217 |
+
a2217
|
2218 |
+
a2218
|
2219 |
+
a2219
|
2220 |
+
a2220
|
2221 |
+
a2221
|
2222 |
+
a2222
|
2223 |
+
a2223
|
2224 |
+
a2224
|
2225 |
+
a2225
|
2226 |
+
a2226
|
2227 |
+
a2227
|
2228 |
+
a2228
|
2229 |
+
a2229
|
2230 |
+
a2230
|
2231 |
+
a2231
|
2232 |
+
a2232
|
2233 |
+
a2233
|
2234 |
+
a2234
|
2235 |
+
a2235
|
2236 |
+
a2236
|
2237 |
+
a2237
|
2238 |
+
a2238
|
2239 |
+
a2239
|
2240 |
+
a2240
|
2241 |
+
a2241
|
2242 |
+
a2242
|
2243 |
+
a2243
|
2244 |
+
a2244
|
2245 |
+
a2245
|
2246 |
+
a2246
|
2247 |
+
a2247
|
2248 |
+
a2248
|
2249 |
+
a2249
|
2250 |
+
a2250
|
2251 |
+
a2251
|
2252 |
+
a2252
|
2253 |
+
a2253
|
2254 |
+
a2254
|
2255 |
+
a2255
|
2256 |
+
a2256
|
2257 |
+
a2257
|
2258 |
+
a2258
|
2259 |
+
a2259
|
2260 |
+
a2260
|
2261 |
+
a2261
|
2262 |
+
a2262
|
2263 |
+
a2263
|
2264 |
+
a2264
|
2265 |
+
a2265
|
2266 |
+
a2266
|
2267 |
+
a2267
|
2268 |
+
a2268
|
2269 |
+
a2269
|
2270 |
+
a2270
|
2271 |
+
a2271
|
2272 |
+
a2272
|
2273 |
+
a2273
|
2274 |
+
a2274
|
2275 |
+
a2275
|
2276 |
+
a2276
|
2277 |
+
a2277
|
2278 |
+
a2278
|
2279 |
+
a2279
|
2280 |
+
a2280
|
2281 |
+
a2281
|
2282 |
+
a2282
|
2283 |
+
a2283
|
2284 |
+
a2284
|
2285 |
+
a2285
|
2286 |
+
a2286
|
2287 |
+
a2287
|
2288 |
+
a2288
|
2289 |
+
a2289
|
2290 |
+
a2290
|
2291 |
+
a2291
|
2292 |
+
a2292
|
2293 |
+
a2293
|
2294 |
+
a2294
|
2295 |
+
a2295
|
2296 |
+
a2296
|
2297 |
+
a2297
|
2298 |
+
a2298
|
2299 |
+
a2299
|
2300 |
+
a2300
|
2301 |
+
a2301
|
2302 |
+
a2302
|
2303 |
+
a2303
|
2304 |
+
a2304
|
2305 |
+
a2305
|
2306 |
+
a2306
|
2307 |
+
a2307
|
2308 |
+
a2308
|
2309 |
+
a2309
|
2310 |
+
a2310
|
2311 |
+
a2311
|
2312 |
+
a2312
|
2313 |
+
a2313
|
2314 |
+
a2314
|
2315 |
+
a2315
|
2316 |
+
a2316
|
2317 |
+
a2317
|
2318 |
+
a2318
|
2319 |
+
a2319
|
2320 |
+
a2320
|
2321 |
+
a2321
|
2322 |
+
a2322
|
2323 |
+
a2323
|
2324 |
+
a2324
|
2325 |
+
a2325
|
2326 |
+
a2326
|
2327 |
+
a2327
|
2328 |
+
a2328
|
2329 |
+
a2329
|
2330 |
+
a2330
|
2331 |
+
a2331
|
2332 |
+
a2332
|
2333 |
+
a2333
|
2334 |
+
a2334
|
2335 |
+
a2335
|
2336 |
+
a2336
|
2337 |
+
a2337
|
2338 |
+
a2338
|
2339 |
+
a2339
|
2340 |
+
a2340
|
2341 |
+
a2341
|
2342 |
+
a2342
|
2343 |
+
a2343
|
2344 |
+
a2344
|
2345 |
+
a2345
|
2346 |
+
a2346
|
2347 |
+
a2347
|
2348 |
+
a2348
|
2349 |
+
a2349
|
2350 |
+
a2350
|
2351 |
+
a2351
|
2352 |
+
a2352
|
2353 |
+
a2353
|
2354 |
+
a2354
|
2355 |
+
a2355
|
2356 |
+
a2356
|
2357 |
+
a2357
|
2358 |
+
a2358
|
2359 |
+
a2359
|
2360 |
+
a2360
|
2361 |
+
a2361
|
2362 |
+
a2362
|
2363 |
+
a2363
|
2364 |
+
a2364
|
2365 |
+
a2365
|
2366 |
+
a2366
|
2367 |
+
a2367
|
2368 |
+
a2368
|
2369 |
+
a2369
|
2370 |
+
a2370
|
2371 |
+
a2371
|
2372 |
+
a2372
|
2373 |
+
a2373
|
2374 |
+
a2374
|
2375 |
+
a2375
|
2376 |
+
a2376
|
2377 |
+
a2377
|
2378 |
+
a2378
|
2379 |
+
a2379
|
2380 |
+
a2380
|
2381 |
+
a2381
|
2382 |
+
a2382
|
2383 |
+
a2383
|
2384 |
+
a2384
|
2385 |
+
a2385
|
2386 |
+
a2386
|
2387 |
+
a2387
|
2388 |
+
a2388
|
2389 |
+
a2389
|
2390 |
+
a2390
|
2391 |
+
a2391
|
2392 |
+
a2392
|
2393 |
+
a2393
|
2394 |
+
a2394
|
2395 |
+
a2395
|
2396 |
+
a2396
|
2397 |
+
a2397
|
2398 |
+
a2398
|
2399 |
+
a2399
|
2400 |
+
a2400
|
2401 |
+
a2401
|
2402 |
+
a2402
|
2403 |
+
a2403
|
2404 |
+
a2404
|
2405 |
+
a2405
|
2406 |
+
a2406
|
2407 |
+
a2407
|
2408 |
+
a2408
|
2409 |
+
a2409
|
2410 |
+
a2410
|
2411 |
+
a2411
|
2412 |
+
a2412
|
2413 |
+
a2413
|
2414 |
+
a2414
|
2415 |
+
a2415
|
2416 |
+
a2416
|
2417 |
+
a2417
|
2418 |
+
a2418
|
2419 |
+
a2419
|
2420 |
+
a2420
|
2421 |
+
a2421
|
2422 |
+
a2422
|
2423 |
+
a2423
|
2424 |
+
a2424
|
2425 |
+
a2425
|
2426 |
+
a2426
|
2427 |
+
a2427
|
2428 |
+
a2428
|
2429 |
+
a2429
|
2430 |
+
a2430
|
2431 |
+
a2431
|
2432 |
+
a2432
|
2433 |
+
a2433
|
2434 |
+
a2434
|
2435 |
+
a2435
|
2436 |
+
a2436
|
2437 |
+
a2437
|
2438 |
+
a2438
|
2439 |
+
a2439
|
2440 |
+
a2440
|
2441 |
+
a2441
|
2442 |
+
a2442
|
2443 |
+
a2443
|
2444 |
+
a2444
|
2445 |
+
a2445
|
2446 |
+
a2446
|
2447 |
+
a2447
|
2448 |
+
a2448
|
2449 |
+
a2449
|
2450 |
+
a2450
|
2451 |
+
a2451
|
2452 |
+
a2452
|
2453 |
+
a2453
|
2454 |
+
a2454
|
2455 |
+
a2455
|
2456 |
+
a2456
|
2457 |
+
a2457
|
2458 |
+
a2458
|
2459 |
+
a2459
|
2460 |
+
a2460
|
2461 |
+
a2461
|
2462 |
+
a2462
|
2463 |
+
a2463
|
2464 |
+
a2464
|
2465 |
+
a2465
|
2466 |
+
a2466
|
2467 |
+
a2467
|
2468 |
+
a2468
|
2469 |
+
a2469
|
2470 |
+
a2470
|
2471 |
+
a2471
|
2472 |
+
a2472
|
2473 |
+
a2473
|
2474 |
+
a2474
|
2475 |
+
a2475
|
2476 |
+
a2476
|
2477 |
+
a2477
|
2478 |
+
a2478
|
2479 |
+
a2479
|
2480 |
+
a2480
|
2481 |
+
a2481
|
2482 |
+
a2482
|
2483 |
+
a2483
|
2484 |
+
a2484
|
2485 |
+
a2485
|
2486 |
+
a2486
|
2487 |
+
a2487
|
2488 |
+
a2488
|
2489 |
+
a2489
|
2490 |
+
a2490
|
2491 |
+
a2491
|
2492 |
+
a2492
|
2493 |
+
a2493
|
2494 |
+
a2494
|
2495 |
+
a2495
|
2496 |
+
a2496
|
2497 |
+
a2497
|
2498 |
+
a2498
|
2499 |
+
a2499
|
2500 |
+
a2500
|
2501 |
+
a2501
|
2502 |
+
a2502
|
2503 |
+
a2503
|
2504 |
+
a2504
|
2505 |
+
a2505
|
2506 |
+
a2506
|
2507 |
+
a2507
|
2508 |
+
a2508
|
2509 |
+
a2509
|
2510 |
+
a2510
|
2511 |
+
a2511
|
2512 |
+
a2512
|
2513 |
+
a2513
|
2514 |
+
a2514
|
2515 |
+
a2515
|
2516 |
+
a2516
|
2517 |
+
a2517
|
2518 |
+
a2518
|
2519 |
+
a2519
|
2520 |
+
a2520
|
2521 |
+
a2521
|
2522 |
+
a2522
|
2523 |
+
a2523
|
2524 |
+
a2524
|
2525 |
+
a2525
|
2526 |
+
a2526
|
2527 |
+
a2527
|
2528 |
+
a2528
|
2529 |
+
a2529
|
2530 |
+
a2530
|
2531 |
+
a2531
|
2532 |
+
a2532
|
2533 |
+
a2533
|
2534 |
+
a2534
|
2535 |
+
a2535
|
2536 |
+
a2536
|
2537 |
+
a2537
|
2538 |
+
a2538
|
2539 |
+
a2539
|
2540 |
+
a2540
|
2541 |
+
a2541
|
2542 |
+
a2542
|
2543 |
+
a2543
|
2544 |
+
a2544
|
2545 |
+
a2545
|
2546 |
+
a2546
|
2547 |
+
a2547
|
2548 |
+
a2548
|
2549 |
+
a2549
|
2550 |
+
a2550
|
2551 |
+
a2551
|
2552 |
+
a2552
|
2553 |
+
a2553
|
2554 |
+
a2554
|
2555 |
+
a2555
|
2556 |
+
a2556
|
2557 |
+
a2557
|
2558 |
+
a2558
|
2559 |
+
a2559
|
2560 |
+
a2560
|
2561 |
+
a2561
|
2562 |
+
a2562
|
2563 |
+
a2563
|
2564 |
+
a2564
|
2565 |
+
a2565
|
2566 |
+
a2566
|
2567 |
+
a2567
|
2568 |
+
a2568
|
2569 |
+
a2569
|
2570 |
+
a2570
|
2571 |
+
a2571
|
2572 |
+
a2572
|
2573 |
+
a2573
|
2574 |
+
a2574
|
2575 |
+
a2575
|
2576 |
+
a2576
|
2577 |
+
a2577
|
2578 |
+
a2578
|
2579 |
+
a2579
|
2580 |
+
a2580
|
2581 |
+
a2581
|
2582 |
+
a2582
|
2583 |
+
a2583
|
2584 |
+
a2584
|
2585 |
+
a2585
|
2586 |
+
a2586
|
2587 |
+
a2587
|
2588 |
+
a2588
|
2589 |
+
a2589
|
2590 |
+
a2590
|
2591 |
+
a2591
|
2592 |
+
a2592
|
2593 |
+
a2593
|
2594 |
+
a2594
|
2595 |
+
a2595
|
2596 |
+
a2596
|
2597 |
+
a2597
|
2598 |
+
a2598
|
2599 |
+
a2599
|
2600 |
+
a2600
|
2601 |
+
a2601
|
2602 |
+
a2602
|
2603 |
+
a2603
|
2604 |
+
a2604
|
2605 |
+
a2605
|
2606 |
+
a2606
|
2607 |
+
a2607
|
2608 |
+
a2608
|
2609 |
+
a2609
|
2610 |
+
a2610
|
2611 |
+
a2611
|
2612 |
+
a2612
|
2613 |
+
a2613
|
2614 |
+
a2614
|
2615 |
+
a2615
|
2616 |
+
a2616
|
2617 |
+
a2617
|
2618 |
+
a2618
|
2619 |
+
a2619
|
2620 |
+
a2620
|
2621 |
+
a2621
|
2622 |
+
a2622
|
2623 |
+
a2623
|
2624 |
+
a2624
|
2625 |
+
a2625
|
2626 |
+
a2626
|
2627 |
+
a2627
|
2628 |
+
a2628
|
2629 |
+
a2629
|
2630 |
+
a2630
|
2631 |
+
a2631
|
2632 |
+
a2632
|
2633 |
+
a2633
|
2634 |
+
a2634
|
2635 |
+
a2635
|
2636 |
+
a2636
|
2637 |
+
a2637
|
2638 |
+
a2638
|
2639 |
+
a2639
|
2640 |
+
a2640
|
2641 |
+
a2641
|
2642 |
+
a2642
|
2643 |
+
a2643
|
2644 |
+
a2644
|
2645 |
+
a2645
|
2646 |
+
a2646
|
2647 |
+
a2647
|
2648 |
+
a2648
|
2649 |
+
a2649
|
2650 |
+
a2650
|
2651 |
+
a2651
|
2652 |
+
a2652
|
2653 |
+
a2653
|
2654 |
+
a2654
|
2655 |
+
a2655
|
2656 |
+
a2656
|
2657 |
+
a2657
|
2658 |
+
a2658
|
2659 |
+
a2659
|
2660 |
+
a2660
|
2661 |
+
a2661
|
2662 |
+
a2662
|
2663 |
+
a2663
|
2664 |
+
a2664
|
2665 |
+
a2665
|
2666 |
+
a2666
|
2667 |
+
a2667
|
2668 |
+
a2668
|
2669 |
+
a2669
|
2670 |
+
a2670
|
2671 |
+
a2671
|
2672 |
+
a2672
|
2673 |
+
a2673
|
2674 |
+
a2674
|
2675 |
+
a2675
|
2676 |
+
a2676
|
2677 |
+
a2677
|
2678 |
+
a2678
|
2679 |
+
a2679
|
2680 |
+
a2680
|
2681 |
+
a2681
|
2682 |
+
a2682
|
2683 |
+
a2683
|
2684 |
+
a2684
|
2685 |
+
a2685
|
2686 |
+
a2686
|
2687 |
+
a2687
|
2688 |
+
a2688
|
2689 |
+
a2689
|
2690 |
+
a2690
|
2691 |
+
a2691
|
2692 |
+
a2692
|
2693 |
+
a2693
|
2694 |
+
a2694
|
2695 |
+
a2695
|
2696 |
+
a2696
|
2697 |
+
a2697
|
2698 |
+
a2698
|
2699 |
+
a2699
|
2700 |
+
a2700
|
2701 |
+
a2701
|
2702 |
+
a2702
|
2703 |
+
a2703
|
2704 |
+
a2704
|
2705 |
+
a2705
|
2706 |
+
a2706
|
2707 |
+
a2707
|
2708 |
+
a2708
|
2709 |
+
a2709
|
2710 |
+
a2710
|
2711 |
+
a2711
|
2712 |
+
a2712
|
2713 |
+
a2713
|
2714 |
+
a2714
|
2715 |
+
a2715
|
2716 |
+
a2716
|
2717 |
+
a2717
|
2718 |
+
a2718
|
2719 |
+
a2719
|
2720 |
+
a2720
|
2721 |
+
a2721
|
2722 |
+
a2722
|
2723 |
+
a2723
|
2724 |
+
a2724
|
2725 |
+
a2725
|
2726 |
+
a2726
|
2727 |
+
a2727
|
2728 |
+
a2728
|
2729 |
+
a2729
|
2730 |
+
a2730
|
2731 |
+
a2731
|
2732 |
+
a2732
|
2733 |
+
a2733
|
2734 |
+
a2734
|
2735 |
+
a2735
|
2736 |
+
a2736
|
2737 |
+
a2737
|
2738 |
+
a2738
|
2739 |
+
a2739
|
2740 |
+
a2740
|
2741 |
+
a2741
|
2742 |
+
a2742
|
2743 |
+
a2743
|
2744 |
+
a2744
|
2745 |
+
a2745
|
2746 |
+
a2746
|
2747 |
+
a2747
|
2748 |
+
a2748
|
2749 |
+
a2749
|
2750 |
+
a2750
|
2751 |
+
a2751
|
2752 |
+
a2752
|
2753 |
+
a2753
|
2754 |
+
a2754
|
2755 |
+
a2755
|
2756 |
+
a2756
|
2757 |
+
a2757
|
2758 |
+
a2758
|
2759 |
+
a2759
|
2760 |
+
a2760
|
2761 |
+
a2761
|
2762 |
+
a2762
|
2763 |
+
a2763
|
2764 |
+
a2764
|
2765 |
+
a2765
|
2766 |
+
a2766
|
2767 |
+
a2767
|
2768 |
+
a2768
|
2769 |
+
a2769
|
2770 |
+
a2770
|
2771 |
+
a2771
|
2772 |
+
a2772
|
2773 |
+
a2773
|
2774 |
+
a2774
|
2775 |
+
a2775
|
2776 |
+
a2776
|
2777 |
+
a2777
|
2778 |
+
a2778
|
2779 |
+
a2779
|
2780 |
+
a2780
|
2781 |
+
a2781
|
2782 |
+
a2782
|
2783 |
+
a2783
|
2784 |
+
a2784
|
2785 |
+
a2785
|
2786 |
+
a2786
|
2787 |
+
a2787
|
2788 |
+
a2788
|
2789 |
+
a2789
|
2790 |
+
a2790
|
2791 |
+
a2791
|
2792 |
+
a2792
|
2793 |
+
a2793
|
2794 |
+
a2794
|
2795 |
+
a2795
|
2796 |
+
a2796
|
2797 |
+
a2797
|
2798 |
+
a2798
|
2799 |
+
a2799
|
2800 |
+
a2800
|
2801 |
+
a2801
|
2802 |
+
a2802
|
2803 |
+
a2803
|
2804 |
+
a2804
|
2805 |
+
a2805
|
2806 |
+
a2806
|
2807 |
+
a2807
|
2808 |
+
a2808
|
2809 |
+
a2809
|
2810 |
+
a2810
|
2811 |
+
a2811
|
2812 |
+
a2812
|
2813 |
+
a2813
|
2814 |
+
a2814
|
2815 |
+
a2815
|
2816 |
+
a2816
|
2817 |
+
a2817
|
2818 |
+
a2818
|
2819 |
+
a2819
|
2820 |
+
a2820
|
2821 |
+
a2821
|
2822 |
+
a2822
|
2823 |
+
a2823
|
2824 |
+
a2824
|
2825 |
+
a2825
|
2826 |
+
a2826
|
2827 |
+
a2827
|
2828 |
+
a2828
|
2829 |
+
a2829
|
2830 |
+
a2830
|
2831 |
+
a2831
|
2832 |
+
a2832
|
2833 |
+
a2833
|
2834 |
+
a2834
|
2835 |
+
a2835
|
2836 |
+
a2836
|
2837 |
+
a2837
|
2838 |
+
a2838
|
2839 |
+
a2839
|
2840 |
+
a2840
|
2841 |
+
a2841
|
2842 |
+
a2842
|
2843 |
+
a2843
|
2844 |
+
a2844
|
2845 |
+
a2845
|
2846 |
+
a2846
|
2847 |
+
a2847
|
2848 |
+
a2848
|
2849 |
+
a2849
|
2850 |
+
a2850
|
2851 |
+
a2851
|
2852 |
+
a2852
|
2853 |
+
a2853
|
2854 |
+
a2854
|
2855 |
+
a2855
|
2856 |
+
a2856
|
2857 |
+
a2857
|
2858 |
+
a2858
|
2859 |
+
a2859
|
2860 |
+
a2860
|
2861 |
+
a2861
|
2862 |
+
a2862
|
2863 |
+
a2863
|
2864 |
+
a2864
|
2865 |
+
a2865
|
2866 |
+
a2866
|
2867 |
+
a2867
|
2868 |
+
a2868
|
2869 |
+
a2869
|
2870 |
+
a2870
|
2871 |
+
a2871
|
2872 |
+
a2872
|
2873 |
+
a2873
|
2874 |
+
a2874
|
2875 |
+
a2875
|
2876 |
+
a2876
|
2877 |
+
a2877
|
2878 |
+
a2878
|
2879 |
+
a2879
|
2880 |
+
a2880
|
2881 |
+
a2881
|
2882 |
+
a2882
|
2883 |
+
a2883
|
2884 |
+
a2884
|
2885 |
+
a2885
|
2886 |
+
a2886
|
2887 |
+
a2887
|
2888 |
+
a2888
|
2889 |
+
a2889
|
2890 |
+
a2890
|
2891 |
+
a2891
|
2892 |
+
a2892
|
2893 |
+
a2893
|
2894 |
+
a2894
|
2895 |
+
a2895
|
2896 |
+
a2896
|
2897 |
+
a2897
|
2898 |
+
a2898
|
2899 |
+
a2899
|
2900 |
+
a2900
|
2901 |
+
a2901
|
2902 |
+
a2902
|
2903 |
+
a2903
|
2904 |
+
a2904
|
2905 |
+
a2905
|
2906 |
+
a2906
|
2907 |
+
a2907
|
2908 |
+
a2908
|
2909 |
+
a2909
|
2910 |
+
a2910
|
2911 |
+
a2911
|
2912 |
+
a2912
|
2913 |
+
a2913
|
2914 |
+
a2914
|
2915 |
+
a2915
|
2916 |
+
a2916
|
2917 |
+
a2917
|
2918 |
+
a2918
|
2919 |
+
a2919
|
2920 |
+
a2920
|
2921 |
+
a2921
|
2922 |
+
a2922
|
2923 |
+
a2923
|
2924 |
+
a2924
|
2925 |
+
a2925
|
2926 |
+
a2926
|
2927 |
+
a2927
|
2928 |
+
a2928
|
2929 |
+
a2929
|
2930 |
+
a2930
|
2931 |
+
a2931
|
2932 |
+
a2932
|
2933 |
+
a2933
|
2934 |
+
a2934
|
2935 |
+
a2935
|
2936 |
+
a2936
|
2937 |
+
a2937
|
2938 |
+
a2938
|
2939 |
+
a2939
|
2940 |
+
a2940
|
2941 |
+
a2941
|
2942 |
+
a2942
|
2943 |
+
a2943
|
2944 |
+
a2944
|
2945 |
+
a2945
|
2946 |
+
a2946
|
2947 |
+
a2947
|
2948 |
+
a2948
|
2949 |
+
a2949
|
2950 |
+
a2950
|
2951 |
+
a2951
|
2952 |
+
a2952
|
2953 |
+
a2953
|
2954 |
+
a2954
|
2955 |
+
a2955
|
2956 |
+
a2956
|
2957 |
+
a2957
|
2958 |
+
a2958
|
2959 |
+
a2959
|
2960 |
+
a2960
|
2961 |
+
a2961
|
2962 |
+
a2962
|
2963 |
+
a2963
|
2964 |
+
a2964
|
2965 |
+
a2965
|
2966 |
+
a2966
|
2967 |
+
a2967
|
2968 |
+
a2968
|
2969 |
+
a2969
|
2970 |
+
a2970
|
2971 |
+
a2971
|
2972 |
+
a2972
|
2973 |
+
a2973
|
2974 |
+
a2974
|
2975 |
+
a2975
|
2976 |
+
a2976
|
2977 |
+
a2977
|
2978 |
+
a2978
|
2979 |
+
a2979
|
2980 |
+
a2980
|
2981 |
+
a2981
|
2982 |
+
a2982
|
2983 |
+
a2983
|
2984 |
+
a2984
|
2985 |
+
a2985
|
2986 |
+
a2986
|
2987 |
+
a2987
|
2988 |
+
a2988
|
2989 |
+
a2989
|
2990 |
+
a2990
|
2991 |
+
a2991
|
2992 |
+
a2992
|
2993 |
+
a2993
|
2994 |
+
a2994
|
2995 |
+
a2995
|
2996 |
+
a2996
|
2997 |
+
a2997
|
2998 |
+
a2998
|
2999 |
+
a2999
|
3000 |
+
a3000
|
3001 |
+
a3001
|
3002 |
+
a3002
|
3003 |
+
a3003
|
3004 |
+
a3004
|
3005 |
+
a3005
|
3006 |
+
a3006
|
3007 |
+
a3007
|
3008 |
+
a3008
|
3009 |
+
a3009
|
3010 |
+
a3010
|
3011 |
+
a3011
|
3012 |
+
a3012
|
3013 |
+
a3013
|
3014 |
+
a3014
|
3015 |
+
a3015
|
3016 |
+
a3016
|
3017 |
+
a3017
|
3018 |
+
a3018
|
3019 |
+
a3019
|
3020 |
+
a3020
|
3021 |
+
a3021
|
3022 |
+
a3022
|
3023 |
+
a3023
|
3024 |
+
a3024
|
3025 |
+
a3025
|
3026 |
+
a3026
|
3027 |
+
a3027
|
3028 |
+
a3028
|
3029 |
+
a3029
|
3030 |
+
a3030
|
3031 |
+
a3031
|
3032 |
+
a3032
|
3033 |
+
a3033
|
3034 |
+
a3034
|
3035 |
+
a3035
|
3036 |
+
a3036
|
3037 |
+
a3037
|
3038 |
+
a3038
|
3039 |
+
a3039
|
3040 |
+
a3040
|
3041 |
+
a3041
|
3042 |
+
a3042
|
3043 |
+
a3043
|
3044 |
+
a3044
|
3045 |
+
a3045
|
3046 |
+
a3046
|
3047 |
+
a3047
|
3048 |
+
a3048
|
3049 |
+
a3049
|
3050 |
+
a3050
|
3051 |
+
a3051
|
3052 |
+
a3052
|
3053 |
+
a3053
|
3054 |
+
a3054
|
3055 |
+
a3055
|
3056 |
+
a3056
|
3057 |
+
a3057
|
3058 |
+
a3058
|
3059 |
+
a3059
|
3060 |
+
a3060
|
3061 |
+
a3061
|
3062 |
+
a3062
|
3063 |
+
a3063
|
3064 |
+
a3064
|
3065 |
+
a3065
|
3066 |
+
a3066
|
3067 |
+
a3067
|
3068 |
+
a3068
|
3069 |
+
a3069
|
3070 |
+
a3070
|
3071 |
+
a3071
|
3072 |
+
a3072
|
3073 |
+
a3073
|
3074 |
+
a3074
|
3075 |
+
a3075
|
3076 |
+
a3076
|
3077 |
+
a3077
|
3078 |
+
a3078
|
3079 |
+
a3079
|
3080 |
+
a3080
|
3081 |
+
a3081
|
3082 |
+
a3082
|
3083 |
+
a3083
|
3084 |
+
a3084
|
3085 |
+
a3085
|
3086 |
+
a3086
|
3087 |
+
a3087
|
3088 |
+
a3088
|
3089 |
+
a3089
|
3090 |
+
a3090
|
3091 |
+
a3091
|
3092 |
+
a3092
|
3093 |
+
a3093
|
3094 |
+
a3094
|
3095 |
+
a3095
|
3096 |
+
a3096
|
3097 |
+
a3097
|
3098 |
+
a3098
|
3099 |
+
a3099
|
3100 |
+
a3100
|
3101 |
+
a3101
|
3102 |
+
a3102
|
3103 |
+
a3103
|
3104 |
+
a3104
|
3105 |
+
a3105
|
3106 |
+
a3106
|
3107 |
+
a3107
|
3108 |
+
a3108
|
3109 |
+
a3109
|
3110 |
+
a3110
|
3111 |
+
a3111
|
3112 |
+
a3112
|
3113 |
+
a3113
|
3114 |
+
a3114
|
3115 |
+
a3115
|
3116 |
+
a3116
|
3117 |
+
a3117
|
3118 |
+
a3118
|
3119 |
+
a3119
|
3120 |
+
a3120
|
3121 |
+
a3121
|
3122 |
+
a3122
|
3123 |
+
a3123
|
3124 |
+
a3124
|
3125 |
+
a3125
|
3126 |
+
a3126
|
3127 |
+
a3127
|
3128 |
+
a3128
|
3129 |
+
a3129
|
3130 |
+
a3130
|
3131 |
+
a3131
|
3132 |
+
a3132
|
3133 |
+
a3133
|
3134 |
+
a3134
|
3135 |
+
a3135
|
3136 |
+
a3136
|
3137 |
+
a3137
|
3138 |
+
a3138
|
3139 |
+
a3139
|
3140 |
+
a3140
|
3141 |
+
a3141
|
3142 |
+
a3142
|
3143 |
+
a3143
|
3144 |
+
a3144
|
3145 |
+
a3145
|
3146 |
+
a3146
|
3147 |
+
a3147
|
3148 |
+
a3148
|
3149 |
+
a3149
|
3150 |
+
a3150
|
3151 |
+
a3151
|
3152 |
+
a3152
|
3153 |
+
a3153
|
3154 |
+
a3154
|
3155 |
+
a3155
|
3156 |
+
a3156
|
3157 |
+
a3157
|
3158 |
+
a3158
|
3159 |
+
a3159
|
3160 |
+
a3160
|
3161 |
+
a3161
|
3162 |
+
a3162
|
3163 |
+
a3163
|
3164 |
+
a3164
|
3165 |
+
a3165
|
3166 |
+
a3166
|
3167 |
+
a3167
|
3168 |
+
a3168
|
3169 |
+
a3169
|
3170 |
+
a3170
|
3171 |
+
a3171
|
3172 |
+
a3172
|
3173 |
+
a3173
|
3174 |
+
a3174
|
3175 |
+
a3175
|
3176 |
+
a3176
|
3177 |
+
a3177
|
3178 |
+
a3178
|
3179 |
+
a3179
|
3180 |
+
a3180
|
3181 |
+
a3181
|
3182 |
+
a3182
|
3183 |
+
a3183
|
3184 |
+
a3184
|
3185 |
+
a3185
|
3186 |
+
a3186
|
3187 |
+
a3187
|
3188 |
+
a3188
|
3189 |
+
a3189
|
3190 |
+
a3190
|
3191 |
+
a3191
|
3192 |
+
a3192
|
3193 |
+
a3193
|
3194 |
+
a3194
|
3195 |
+
a3195
|
3196 |
+
a3196
|
3197 |
+
a3197
|
3198 |
+
a3198
|
3199 |
+
a3199
|
3200 |
+
a3200
|
3201 |
+
a3201
|
3202 |
+
a3202
|
3203 |
+
a3203
|
3204 |
+
a3204
|
3205 |
+
a3205
|
3206 |
+
a3206
|
3207 |
+
a3207
|
3208 |
+
a3208
|
3209 |
+
a3209
|
3210 |
+
a3210
|
3211 |
+
a3211
|
3212 |
+
a3212
|
3213 |
+
a3213
|
3214 |
+
a3214
|
3215 |
+
a3215
|
3216 |
+
a3216
|
3217 |
+
a3217
|
3218 |
+
a3218
|
3219 |
+
a3219
|
3220 |
+
a3220
|
3221 |
+
a3221
|
3222 |
+
a3222
|
3223 |
+
a3223
|
3224 |
+
a3224
|
3225 |
+
a3225
|
3226 |
+
a3226
|
3227 |
+
a3227
|
3228 |
+
a3228
|
3229 |
+
a3229
|
3230 |
+
a3230
|
3231 |
+
a3231
|
3232 |
+
a3232
|
3233 |
+
a3233
|
3234 |
+
a3234
|
3235 |
+
a3235
|
3236 |
+
a3236
|
3237 |
+
a3237
|
3238 |
+
a3238
|
3239 |
+
a3239
|
3240 |
+
a3240
|
3241 |
+
a3241
|
3242 |
+
a3242
|
3243 |
+
a3243
|
3244 |
+
a3244
|
3245 |
+
a3245
|
3246 |
+
a3246
|
3247 |
+
a3247
|
3248 |
+
a3248
|
3249 |
+
a3249
|
3250 |
+
a3250
|
3251 |
+
a3251
|
3252 |
+
a3252
|
3253 |
+
a3253
|
3254 |
+
a3254
|
3255 |
+
a3255
|
3256 |
+
a3256
|
3257 |
+
a3257
|
3258 |
+
a3258
|
3259 |
+
a3259
|
3260 |
+
a3260
|
3261 |
+
a3261
|
3262 |
+
a3262
|
3263 |
+
a3263
|
3264 |
+
a3264
|
3265 |
+
a3265
|
3266 |
+
a3266
|
3267 |
+
a3267
|
3268 |
+
a3268
|
3269 |
+
a3269
|
3270 |
+
a3270
|
3271 |
+
a3271
|
3272 |
+
a3272
|
3273 |
+
a3273
|
3274 |
+
a3274
|
3275 |
+
a3275
|
3276 |
+
a3276
|
3277 |
+
a3277
|
3278 |
+
a3278
|
3279 |
+
a3279
|
3280 |
+
a3280
|
3281 |
+
a3281
|
3282 |
+
a3282
|
3283 |
+
a3283
|
3284 |
+
a3284
|
3285 |
+
a3285
|
3286 |
+
a3286
|
3287 |
+
a3287
|
3288 |
+
a3288
|
3289 |
+
a3289
|
3290 |
+
a3290
|
3291 |
+
a3291
|
3292 |
+
a3292
|
3293 |
+
a3293
|
3294 |
+
a3294
|
3295 |
+
a3295
|
3296 |
+
a3296
|
3297 |
+
a3297
|
3298 |
+
a3298
|
3299 |
+
a3299
|
3300 |
+
a3300
|
3301 |
+
a3301
|
3302 |
+
a3302
|
3303 |
+
a3303
|
3304 |
+
a3304
|
3305 |
+
a3305
|
3306 |
+
a3306
|
3307 |
+
a3307
|
3308 |
+
a3308
|
3309 |
+
a3309
|
3310 |
+
a3310
|
3311 |
+
a3311
|
3312 |
+
a3312
|
3313 |
+
a3313
|
3314 |
+
a3314
|
3315 |
+
a3315
|
3316 |
+
a3316
|
3317 |
+
a3317
|
3318 |
+
a3318
|
3319 |
+
a3319
|
3320 |
+
a3320
|
3321 |
+
a3321
|
3322 |
+
a3322
|
3323 |
+
a3323
|
3324 |
+
a3324
|
3325 |
+
a3325
|
3326 |
+
a3326
|
3327 |
+
a3327
|
3328 |
+
a3328
|
3329 |
+
a3329
|
3330 |
+
a3330
|
3331 |
+
a3331
|
3332 |
+
a3332
|
3333 |
+
a3333
|
3334 |
+
a3334
|
3335 |
+
a3335
|
3336 |
+
a3336
|
3337 |
+
a3337
|
3338 |
+
a3338
|
3339 |
+
a3339
|
3340 |
+
a3340
|
3341 |
+
a3341
|
3342 |
+
a3342
|
3343 |
+
a3343
|
3344 |
+
a3344
|
3345 |
+
a3345
|
3346 |
+
a3346
|
3347 |
+
a3347
|
3348 |
+
a3348
|
3349 |
+
a3349
|
3350 |
+
a3350
|
3351 |
+
a3351
|
3352 |
+
a3352
|
3353 |
+
a3353
|
3354 |
+
a3354
|
3355 |
+
a3355
|
3356 |
+
a3356
|
3357 |
+
a3357
|
3358 |
+
a3358
|
3359 |
+
a3359
|
3360 |
+
a3360
|
3361 |
+
a3361
|
3362 |
+
a3362
|
3363 |
+
a3363
|
3364 |
+
a3364
|
3365 |
+
a3365
|
3366 |
+
a3366
|
3367 |
+
a3367
|
3368 |
+
a3368
|
3369 |
+
a3369
|
3370 |
+
a3370
|
3371 |
+
a3371
|
3372 |
+
a3372
|
3373 |
+
a3373
|
3374 |
+
a3374
|
3375 |
+
a3375
|
3376 |
+
a3376
|
3377 |
+
a3377
|
3378 |
+
a3378
|
3379 |
+
a3379
|
3380 |
+
a3380
|
3381 |
+
a3381
|
3382 |
+
a3382
|
3383 |
+
a3383
|
3384 |
+
a3384
|
3385 |
+
a3385
|
3386 |
+
a3386
|
3387 |
+
a3387
|
3388 |
+
a3388
|
3389 |
+
a3389
|
3390 |
+
a3390
|
3391 |
+
a3391
|
3392 |
+
a3392
|
3393 |
+
a3393
|
3394 |
+
a3394
|
3395 |
+
a3395
|
3396 |
+
a3396
|
3397 |
+
a3397
|
3398 |
+
a3398
|
3399 |
+
a3399
|
3400 |
+
a3400
|
3401 |
+
a3401
|
3402 |
+
a3402
|
3403 |
+
a3403
|
3404 |
+
a3404
|
3405 |
+
a3405
|
3406 |
+
a3406
|
3407 |
+
a3407
|
3408 |
+
a3408
|
3409 |
+
a3409
|
3410 |
+
a3410
|
3411 |
+
a3411
|
3412 |
+
a3412
|
3413 |
+
a3413
|
3414 |
+
a3414
|
3415 |
+
a3415
|
3416 |
+
a3416
|
3417 |
+
a3417
|
3418 |
+
a3418
|
3419 |
+
a3419
|
3420 |
+
a3420
|
3421 |
+
a3421
|
3422 |
+
a3422
|
3423 |
+
a3423
|
3424 |
+
a3424
|
3425 |
+
a3425
|
3426 |
+
a3426
|
3427 |
+
a3427
|
3428 |
+
a3428
|
3429 |
+
a3429
|
3430 |
+
a3430
|
3431 |
+
a3431
|
3432 |
+
a3432
|
3433 |
+
a3433
|
3434 |
+
a3434
|
3435 |
+
a3435
|
3436 |
+
a3436
|
3437 |
+
a3437
|
3438 |
+
a3438
|
3439 |
+
a3439
|
3440 |
+
a3440
|
3441 |
+
a3441
|
3442 |
+
a3442
|
3443 |
+
a3443
|
3444 |
+
a3444
|
3445 |
+
a3445
|
3446 |
+
a3446
|
3447 |
+
a3447
|
3448 |
+
a3448
|
3449 |
+
a3449
|
3450 |
+
a3450
|
3451 |
+
a3451
|
3452 |
+
a3452
|
3453 |
+
a3453
|
3454 |
+
a3454
|
3455 |
+
a3455
|
3456 |
+
a3456
|
3457 |
+
a3457
|
3458 |
+
a3458
|
3459 |
+
a3459
|
3460 |
+
a3460
|
3461 |
+
a3461
|
3462 |
+
a3462
|
3463 |
+
a3463
|
3464 |
+
a3464
|
3465 |
+
a3465
|
3466 |
+
a3466
|
3467 |
+
a3467
|
3468 |
+
a3468
|
3469 |
+
a3469
|
3470 |
+
a3470
|
3471 |
+
a3471
|
3472 |
+
a3472
|
3473 |
+
a3473
|
3474 |
+
a3474
|
3475 |
+
a3475
|
3476 |
+
a3476
|
3477 |
+
a3477
|
3478 |
+
a3478
|
3479 |
+
a3479
|
3480 |
+
a3480
|
3481 |
+
a3481
|
3482 |
+
a3482
|
3483 |
+
a3483
|
3484 |
+
a3484
|
3485 |
+
a3485
|
3486 |
+
a3486
|
3487 |
+
a3487
|
3488 |
+
a3488
|
3489 |
+
a3489
|
3490 |
+
a3490
|
3491 |
+
a3491
|
3492 |
+
a3492
|
3493 |
+
a3493
|
3494 |
+
a3494
|
3495 |
+
a3495
|
3496 |
+
a3496
|
3497 |
+
a3497
|
3498 |
+
a3498
|
3499 |
+
a3499
|
3500 |
+
a3500
|
3501 |
+
a3501
|
3502 |
+
a3502
|
3503 |
+
a3503
|
3504 |
+
a3504
|
3505 |
+
a3505
|
3506 |
+
a3506
|
3507 |
+
a3507
|
3508 |
+
a3508
|
3509 |
+
a3509
|
3510 |
+
a3510
|
3511 |
+
a3511
|
3512 |
+
a3512
|
3513 |
+
a3513
|
3514 |
+
a3514
|
3515 |
+
a3515
|
3516 |
+
a3516
|
3517 |
+
a3517
|
3518 |
+
a3518
|
3519 |
+
a3519
|
3520 |
+
a3520
|
3521 |
+
a3521
|
3522 |
+
a3522
|
3523 |
+
a3523
|
3524 |
+
a3524
|
3525 |
+
a3525
|
3526 |
+
a3526
|
3527 |
+
a3527
|
3528 |
+
a3528
|
3529 |
+
a3529
|
3530 |
+
a3530
|
3531 |
+
a3531
|
3532 |
+
a3532
|
3533 |
+
a3533
|
3534 |
+
a3534
|
3535 |
+
a3535
|
3536 |
+
a3536
|
3537 |
+
a3537
|
3538 |
+
a3538
|
3539 |
+
a3539
|
3540 |
+
a3540
|
3541 |
+
a3541
|
3542 |
+
a3542
|
3543 |
+
a3543
|
3544 |
+
a3544
|
3545 |
+
a3545
|
3546 |
+
a3546
|
3547 |
+
a3547
|
3548 |
+
a3548
|
3549 |
+
a3549
|
3550 |
+
a3550
|
3551 |
+
a3551
|
3552 |
+
a3552
|
3553 |
+
a3553
|
3554 |
+
a3554
|
3555 |
+
a3555
|
3556 |
+
a3556
|
3557 |
+
a3557
|
3558 |
+
a3558
|
3559 |
+
a3559
|
3560 |
+
a3560
|
3561 |
+
a3561
|
3562 |
+
a3562
|
3563 |
+
a3563
|
3564 |
+
a3564
|
3565 |
+
a3565
|
3566 |
+
a3566
|
3567 |
+
a3567
|
3568 |
+
a3568
|
3569 |
+
a3569
|
3570 |
+
a3570
|
3571 |
+
a3571
|
3572 |
+
a3572
|
3573 |
+
a3573
|
3574 |
+
a3574
|
3575 |
+
a3575
|
3576 |
+
a3576
|
3577 |
+
a3577
|
3578 |
+
a3578
|
3579 |
+
a3579
|
3580 |
+
a3580
|
3581 |
+
a3581
|
3582 |
+
a3582
|
3583 |
+
a3583
|
3584 |
+
a3584
|
3585 |
+
a3585
|
3586 |
+
a3586
|
3587 |
+
a3587
|
3588 |
+
a3588
|
3589 |
+
a3589
|
3590 |
+
a3590
|
3591 |
+
a3591
|
3592 |
+
a3592
|
3593 |
+
a3593
|
3594 |
+
a3594
|
3595 |
+
a3595
|
3596 |
+
a3596
|
3597 |
+
a3597
|
3598 |
+
a3598
|
3599 |
+
a3599
|
3600 |
+
a3600
|
3601 |
+
a3601
|
3602 |
+
a3602
|
3603 |
+
a3603
|
3604 |
+
a3604
|
3605 |
+
a3605
|
3606 |
+
a3606
|
3607 |
+
a3607
|
3608 |
+
a3608
|
3609 |
+
a3609
|
3610 |
+
a3610
|
3611 |
+
a3611
|
3612 |
+
a3612
|
3613 |
+
a3613
|
3614 |
+
a3614
|
3615 |
+
a3615
|
3616 |
+
a3616
|
3617 |
+
a3617
|
3618 |
+
a3618
|
3619 |
+
a3619
|
3620 |
+
a3620
|
3621 |
+
a3621
|
3622 |
+
a3622
|
3623 |
+
a3623
|
3624 |
+
a3624
|
3625 |
+
a3625
|
3626 |
+
a3626
|
3627 |
+
a3627
|
3628 |
+
a3628
|
3629 |
+
a3629
|
3630 |
+
a3630
|
3631 |
+
a3631
|
3632 |
+
a3632
|
3633 |
+
a3633
|
3634 |
+
a3634
|
3635 |
+
a3635
|
3636 |
+
a3636
|
3637 |
+
a3637
|
3638 |
+
a3638
|
3639 |
+
a3639
|
3640 |
+
a3640
|
3641 |
+
a3641
|
3642 |
+
a3642
|
3643 |
+
a3643
|
3644 |
+
a3644
|
3645 |
+
a3645
|
3646 |
+
a3646
|
3647 |
+
a3647
|
3648 |
+
a3648
|
3649 |
+
a3649
|
3650 |
+
a3650
|
3651 |
+
a3651
|
3652 |
+
a3652
|
3653 |
+
a3653
|
3654 |
+
a3654
|
3655 |
+
a3655
|
3656 |
+
a3656
|
3657 |
+
a3657
|
3658 |
+
a3658
|
3659 |
+
a3659
|
3660 |
+
a3660
|
3661 |
+
a3661
|
3662 |
+
a3662
|
3663 |
+
a3663
|
3664 |
+
a3664
|
3665 |
+
a3665
|
3666 |
+
a3666
|
3667 |
+
a3667
|
3668 |
+
a3668
|
3669 |
+
a3669
|
3670 |
+
a3670
|
3671 |
+
a3671
|
3672 |
+
a3672
|
3673 |
+
a3673
|
3674 |
+
a3674
|
3675 |
+
a3675
|
3676 |
+
a3676
|
3677 |
+
a3677
|
3678 |
+
a3678
|
3679 |
+
a3679
|
3680 |
+
a3680
|
3681 |
+
a3681
|
3682 |
+
a3682
|
3683 |
+
a3683
|
3684 |
+
a3684
|
3685 |
+
a3685
|
3686 |
+
a3686
|
3687 |
+
a3687
|
3688 |
+
a3688
|
3689 |
+
a3689
|
3690 |
+
a3690
|
3691 |
+
a3691
|
3692 |
+
a3692
|
3693 |
+
a3693
|
3694 |
+
a3694
|
3695 |
+
a3695
|
3696 |
+
a3696
|
3697 |
+
a3697
|
3698 |
+
a3698
|
3699 |
+
a3699
|
3700 |
+
a3700
|
3701 |
+
a3701
|
3702 |
+
a3702
|
3703 |
+
a3703
|
3704 |
+
a3704
|
3705 |
+
a3705
|
3706 |
+
a3706
|
3707 |
+
a3707
|
3708 |
+
a3708
|
3709 |
+
a3709
|
3710 |
+
a3710
|
3711 |
+
a3711
|
3712 |
+
a3712
|
3713 |
+
a3713
|
3714 |
+
a3714
|
3715 |
+
a3715
|
3716 |
+
a3716
|
3717 |
+
a3717
|
3718 |
+
a3718
|
3719 |
+
a3719
|
3720 |
+
a3720
|
3721 |
+
a3721
|
3722 |
+
a3722
|
3723 |
+
a3723
|
3724 |
+
a3724
|
3725 |
+
a3725
|
3726 |
+
a3726
|
3727 |
+
a3727
|
3728 |
+
a3728
|
3729 |
+
a3729
|
3730 |
+
a3730
|
3731 |
+
a3731
|
3732 |
+
a3732
|
3733 |
+
a3733
|
3734 |
+
a3734
|
3735 |
+
a3735
|
3736 |
+
a3736
|
3737 |
+
a3737
|
3738 |
+
a3738
|
3739 |
+
a3739
|
3740 |
+
a3740
|
3741 |
+
a3741
|
3742 |
+
a3742
|
3743 |
+
a3743
|
3744 |
+
a3744
|
3745 |
+
a3745
|
3746 |
+
a3746
|
3747 |
+
a3747
|
3748 |
+
a3748
|
3749 |
+
a3749
|
3750 |
+
a3750
|
3751 |
+
a3751
|
3752 |
+
a3752
|
3753 |
+
a3753
|
3754 |
+
a3754
|
3755 |
+
a3755
|
3756 |
+
a3756
|
3757 |
+
a3757
|
3758 |
+
a3758
|
3759 |
+
a3759
|
3760 |
+
a3760
|
3761 |
+
a3761
|
3762 |
+
a3762
|
3763 |
+
a3763
|
3764 |
+
a3764
|
3765 |
+
a3765
|
3766 |
+
a3766
|
3767 |
+
a3767
|
3768 |
+
a3768
|
3769 |
+
a3769
|
3770 |
+
a3770
|
3771 |
+
a3771
|
3772 |
+
a3772
|
3773 |
+
a3773
|
3774 |
+
a3774
|
3775 |
+
a3775
|
3776 |
+
a3776
|
3777 |
+
a3777
|
3778 |
+
a3778
|
3779 |
+
a3779
|
3780 |
+
a3780
|
3781 |
+
a3781
|
3782 |
+
a3782
|
3783 |
+
a3783
|
3784 |
+
a3784
|
3785 |
+
a3785
|
3786 |
+
a3786
|
3787 |
+
a3787
|
3788 |
+
a3788
|
3789 |
+
a3789
|
3790 |
+
a3790
|
3791 |
+
a3791
|
3792 |
+
a3792
|
3793 |
+
a3793
|
3794 |
+
a3794
|
3795 |
+
a3795
|
3796 |
+
a3796
|
3797 |
+
a3797
|
3798 |
+
a3798
|
3799 |
+
a3799
|
3800 |
+
a3800
|
3801 |
+
a3801
|
3802 |
+
a3802
|
3803 |
+
a3803
|
3804 |
+
a3804
|
3805 |
+
a3805
|
3806 |
+
a3806
|
3807 |
+
a3807
|
3808 |
+
a3808
|
3809 |
+
a3809
|
3810 |
+
a3810
|
3811 |
+
a3811
|
3812 |
+
a3812
|
3813 |
+
a3813
|
3814 |
+
a3814
|
3815 |
+
a3815
|
3816 |
+
a3816
|
3817 |
+
a3817
|
3818 |
+
a3818
|
3819 |
+
a3819
|
3820 |
+
a3820
|
3821 |
+
a3821
|
3822 |
+
a3822
|
3823 |
+
a3823
|
3824 |
+
a3824
|
3825 |
+
a3825
|
3826 |
+
a3826
|
3827 |
+
a3827
|
3828 |
+
a3828
|
3829 |
+
a3829
|
3830 |
+
a3830
|
3831 |
+
a3831
|
3832 |
+
a3832
|
3833 |
+
a3833
|
3834 |
+
a3834
|
3835 |
+
a3835
|
3836 |
+
a3836
|
3837 |
+
a3837
|
3838 |
+
a3838
|
3839 |
+
a3839
|
3840 |
+
a3840
|
3841 |
+
a3841
|
3842 |
+
a3842
|
3843 |
+
a3843
|
3844 |
+
a3844
|
3845 |
+
a3845
|
3846 |
+
a3846
|
3847 |
+
a3847
|
3848 |
+
a3848
|
3849 |
+
a3849
|
3850 |
+
a3850
|
3851 |
+
a3851
|
3852 |
+
a3852
|
3853 |
+
a3853
|
3854 |
+
a3854
|
3855 |
+
a3855
|
3856 |
+
a3856
|
3857 |
+
a3857
|
3858 |
+
a3858
|
3859 |
+
a3859
|
3860 |
+
a3860
|
3861 |
+
a3861
|
3862 |
+
a3862
|
3863 |
+
a3863
|
3864 |
+
a3864
|
3865 |
+
a3865
|
3866 |
+
a3866
|
3867 |
+
a3867
|
3868 |
+
a3868
|
3869 |
+
a3869
|
3870 |
+
a3870
|
3871 |
+
a3871
|
3872 |
+
a3872
|
3873 |
+
a3873
|
3874 |
+
a3874
|
3875 |
+
a3875
|
3876 |
+
a3876
|
3877 |
+
a3877
|
3878 |
+
a3878
|
3879 |
+
a3879
|
3880 |
+
a3880
|
3881 |
+
a3881
|
3882 |
+
a3882
|
3883 |
+
a3883
|
3884 |
+
a3884
|
3885 |
+
a3885
|
3886 |
+
a3886
|
3887 |
+
a3887
|
3888 |
+
a3888
|
3889 |
+
a3889
|
3890 |
+
a3890
|
3891 |
+
a3891
|
3892 |
+
a3892
|
3893 |
+
a3893
|
3894 |
+
a3894
|
3895 |
+
a3895
|
3896 |
+
a3896
|
3897 |
+
a3897
|
3898 |
+
a3898
|
3899 |
+
a3899
|
3900 |
+
a3900
|
3901 |
+
a3901
|
3902 |
+
a3902
|
3903 |
+
a3903
|
3904 |
+
a3904
|
3905 |
+
a3905
|
3906 |
+
a3906
|
3907 |
+
a3907
|
3908 |
+
a3908
|
3909 |
+
a3909
|
3910 |
+
a3910
|
3911 |
+
a3911
|
3912 |
+
a3912
|
3913 |
+
a3913
|
3914 |
+
a3914
|
3915 |
+
a3915
|
3916 |
+
a3916
|
3917 |
+
a3917
|
3918 |
+
a3918
|
3919 |
+
a3919
|
3920 |
+
a3920
|
3921 |
+
a3921
|
3922 |
+
a3922
|
3923 |
+
a3923
|
3924 |
+
a3924
|
3925 |
+
a3925
|
3926 |
+
a3926
|
3927 |
+
a3927
|
3928 |
+
a3928
|
3929 |
+
a3929
|
3930 |
+
a3930
|
3931 |
+
a3931
|
3932 |
+
a3932
|
3933 |
+
a3933
|
3934 |
+
a3934
|
3935 |
+
a3935
|
3936 |
+
a3936
|
3937 |
+
a3937
|
3938 |
+
a3938
|
3939 |
+
a3939
|
3940 |
+
a3940
|
3941 |
+
a3941
|
3942 |
+
a3942
|
3943 |
+
a3943
|
3944 |
+
a3944
|
3945 |
+
a3945
|
3946 |
+
a3946
|
3947 |
+
a3947
|
3948 |
+
a3948
|
3949 |
+
a3949
|
3950 |
+
a3950
|
3951 |
+
a3951
|
3952 |
+
a3952
|
3953 |
+
a3953
|
3954 |
+
a3954
|
3955 |
+
a3955
|
3956 |
+
a3956
|
3957 |
+
a3957
|
3958 |
+
a3958
|
3959 |
+
a3959
|
3960 |
+
a3960
|
3961 |
+
a3961
|
3962 |
+
a3962
|
3963 |
+
a3963
|
3964 |
+
a3964
|
3965 |
+
a3965
|
3966 |
+
a3966
|
3967 |
+
a3967
|
3968 |
+
a3968
|
3969 |
+
a3969
|
3970 |
+
a3970
|
3971 |
+
a3971
|
3972 |
+
a3972
|
3973 |
+
a3973
|
3974 |
+
a3974
|
3975 |
+
a3975
|
3976 |
+
a3976
|
3977 |
+
a3977
|
3978 |
+
a3978
|
3979 |
+
a3979
|
3980 |
+
a3980
|
3981 |
+
a3981
|
3982 |
+
a3982
|
3983 |
+
a3983
|
3984 |
+
a3984
|
3985 |
+
a3985
|
3986 |
+
a3986
|
3987 |
+
a3987
|
3988 |
+
a3988
|
3989 |
+
a3989
|
3990 |
+
a3990
|
3991 |
+
a3991
|
3992 |
+
a3992
|
3993 |
+
a3993
|
3994 |
+
a3994
|
3995 |
+
a3995
|
3996 |
+
a3996
|
3997 |
+
a3997
|
3998 |
+
a3998
|
3999 |
+
a3999
|
4000 |
+
a4000
|
4001 |
+
a4001
|
4002 |
+
a4002
|
4003 |
+
a4003
|
4004 |
+
a4004
|
4005 |
+
a4005
|
4006 |
+
a4006
|
4007 |
+
a4007
|
4008 |
+
a4008
|
4009 |
+
a4009
|
4010 |
+
a4010
|
4011 |
+
a4011
|
4012 |
+
a4012
|
4013 |
+
a4013
|
4014 |
+
a4014
|
4015 |
+
a4015
|
4016 |
+
a4016
|
4017 |
+
a4017
|
4018 |
+
a4018
|
4019 |
+
a4019
|
4020 |
+
a4020
|
4021 |
+
a4021
|
4022 |
+
a4022
|
4023 |
+
a4023
|
4024 |
+
a4024
|
4025 |
+
a4025
|
4026 |
+
a4026
|
4027 |
+
a4027
|
4028 |
+
a4028
|
4029 |
+
a4029
|
4030 |
+
a4030
|
4031 |
+
a4031
|
4032 |
+
a4032
|
4033 |
+
a4033
|
4034 |
+
a4034
|
4035 |
+
a4035
|
4036 |
+
a4036
|
4037 |
+
a4037
|
4038 |
+
a4038
|
4039 |
+
a4039
|
4040 |
+
a4040
|
4041 |
+
a4041
|
4042 |
+
a4042
|
4043 |
+
a4043
|
4044 |
+
a4044
|
4045 |
+
a4045
|
4046 |
+
a4046
|
4047 |
+
a4047
|
4048 |
+
a4048
|
4049 |
+
a4049
|
4050 |
+
a4050
|
4051 |
+
a4051
|
4052 |
+
a4052
|
4053 |
+
a4053
|
4054 |
+
a4054
|
4055 |
+
a4055
|
4056 |
+
a4056
|
4057 |
+
a4057
|
4058 |
+
a4058
|
4059 |
+
a4059
|
4060 |
+
a4060
|
4061 |
+
a4061
|
4062 |
+
a4062
|
4063 |
+
a4063
|
4064 |
+
a4064
|
4065 |
+
a4065
|
4066 |
+
a4066
|
4067 |
+
a4067
|
4068 |
+
a4068
|
4069 |
+
a4069
|
4070 |
+
a4070
|
4071 |
+
a4071
|
4072 |
+
a4072
|
4073 |
+
a4073
|
4074 |
+
a4074
|
4075 |
+
a4075
|
4076 |
+
a4076
|
4077 |
+
a4077
|
4078 |
+
a4078
|
4079 |
+
a4079
|
4080 |
+
a4080
|
4081 |
+
a4081
|
4082 |
+
a4082
|
4083 |
+
a4083
|
4084 |
+
a4084
|
4085 |
+
a4085
|
4086 |
+
a4086
|
4087 |
+
a4087
|
4088 |
+
a4088
|
4089 |
+
a4089
|
4090 |
+
a4090
|
4091 |
+
a4091
|
4092 |
+
a4092
|
4093 |
+
a4093
|
4094 |
+
a4094
|
4095 |
+
a4095
|
4096 |
+
a4096
|
4097 |
+
a4097
|
4098 |
+
a4098
|
4099 |
+
a4099
|
4100 |
+
a4100
|
4101 |
+
a4101
|
4102 |
+
a4102
|
4103 |
+
a4103
|
4104 |
+
a4104
|
4105 |
+
a4105
|
4106 |
+
a4106
|
4107 |
+
a4107
|
4108 |
+
a4108
|
4109 |
+
a4109
|
4110 |
+
a4110
|
4111 |
+
a4111
|
4112 |
+
a4112
|
4113 |
+
a4113
|
4114 |
+
a4114
|
4115 |
+
a4115
|
4116 |
+
a4116
|
4117 |
+
a4117
|
4118 |
+
a4118
|
4119 |
+
a4119
|
4120 |
+
a4120
|
4121 |
+
a4121
|
4122 |
+
a4122
|
4123 |
+
a4123
|
4124 |
+
a4124
|
4125 |
+
a4125
|
4126 |
+
a4126
|
4127 |
+
a4127
|
4128 |
+
a4128
|
4129 |
+
a4129
|
4130 |
+
a4130
|
4131 |
+
a4131
|
4132 |
+
a4132
|
4133 |
+
a4133
|
4134 |
+
a4134
|
4135 |
+
a4135
|
4136 |
+
a4136
|
4137 |
+
a4137
|
4138 |
+
a4138
|
4139 |
+
a4139
|
4140 |
+
a4140
|
4141 |
+
a4141
|
4142 |
+
a4142
|
4143 |
+
a4143
|
4144 |
+
a4144
|
4145 |
+
a4145
|
4146 |
+
a4146
|
4147 |
+
a4147
|
4148 |
+
a4148
|
4149 |
+
a4149
|
4150 |
+
a4150
|
4151 |
+
a4151
|
4152 |
+
a4152
|
4153 |
+
a4153
|
4154 |
+
a4154
|
4155 |
+
a4155
|
4156 |
+
a4156
|
4157 |
+
a4157
|
4158 |
+
a4158
|
4159 |
+
a4159
|
4160 |
+
a4160
|
4161 |
+
a4161
|
4162 |
+
a4162
|
4163 |
+
a4163
|
4164 |
+
a4164
|
4165 |
+
a4165
|
4166 |
+
a4166
|
4167 |
+
a4167
|
4168 |
+
a4168
|
4169 |
+
a4169
|
4170 |
+
a4170
|
4171 |
+
a4171
|
4172 |
+
a4172
|
4173 |
+
a4173
|
4174 |
+
a4174
|
4175 |
+
a4175
|
4176 |
+
a4176
|
4177 |
+
a4177
|
4178 |
+
a4178
|
4179 |
+
a4179
|
4180 |
+
a4180
|
4181 |
+
a4181
|
4182 |
+
a4182
|
4183 |
+
a4183
|
4184 |
+
a4184
|
4185 |
+
a4185
|
4186 |
+
a4186
|
4187 |
+
a4187
|
4188 |
+
a4188
|
4189 |
+
a4189
|
4190 |
+
a4190
|
4191 |
+
a4191
|
4192 |
+
a4192
|
4193 |
+
a4193
|
4194 |
+
a4194
|
4195 |
+
a4195
|
4196 |
+
a4196
|
4197 |
+
a4197
|
4198 |
+
a4198
|
4199 |
+
a4199
|
4200 |
+
a4200
|
4201 |
+
a4201
|
4202 |
+
a4202
|
4203 |
+
a4203
|
4204 |
+
a4204
|
4205 |
+
a4205
|
4206 |
+
a4206
|
4207 |
+
a4207
|
4208 |
+
a4208
|
4209 |
+
a4209
|
4210 |
+
a4210
|
4211 |
+
a4211
|
4212 |
+
a4212
|
4213 |
+
a4213
|
4214 |
+
a4214
|
4215 |
+
a4215
|
4216 |
+
a4216
|
4217 |
+
a4217
|
4218 |
+
a4218
|
4219 |
+
a4219
|
4220 |
+
a4220
|
4221 |
+
a4221
|
4222 |
+
a4222
|
4223 |
+
a4223
|
4224 |
+
a4224
|
4225 |
+
a4225
|
4226 |
+
a4226
|
4227 |
+
a4227
|
4228 |
+
a4228
|
4229 |
+
a4229
|
4230 |
+
a4230
|
4231 |
+
a4231
|
4232 |
+
a4232
|
4233 |
+
a4233
|
4234 |
+
a4234
|
4235 |
+
a4235
|
4236 |
+
a4236
|
4237 |
+
a4237
|
4238 |
+
a4238
|
4239 |
+
a4239
|
4240 |
+
a4240
|
4241 |
+
a4241
|
4242 |
+
a4242
|
4243 |
+
a4243
|
4244 |
+
a4244
|
4245 |
+
a4245
|
4246 |
+
a4246
|
4247 |
+
a4247
|
4248 |
+
a4248
|
4249 |
+
a4249
|
4250 |
+
a4250
|
4251 |
+
a4251
|
4252 |
+
a4252
|
4253 |
+
a4253
|
4254 |
+
a4254
|
4255 |
+
a4255
|
4256 |
+
a4256
|
4257 |
+
a4257
|
4258 |
+
a4258
|
4259 |
+
a4259
|
4260 |
+
a4260
|
4261 |
+
a4261
|
4262 |
+
a4262
|
4263 |
+
a4263
|
4264 |
+
a4264
|
4265 |
+
a4265
|
4266 |
+
a4266
|
4267 |
+
a4267
|
4268 |
+
a4268
|
4269 |
+
a4269
|
4270 |
+
a4270
|
4271 |
+
a4271
|
4272 |
+
a4272
|
4273 |
+
a4273
|
4274 |
+
a4274
|
4275 |
+
a4275
|
4276 |
+
a4276
|
4277 |
+
a4277
|
4278 |
+
a4278
|
4279 |
+
a4279
|
4280 |
+
a4280
|
4281 |
+
a4281
|
4282 |
+
a4282
|
4283 |
+
a4283
|
4284 |
+
a4284
|
4285 |
+
a4285
|
4286 |
+
a4286
|
4287 |
+
a4287
|
4288 |
+
a4288
|
4289 |
+
a4289
|
4290 |
+
a4290
|
4291 |
+
a4291
|
4292 |
+
a4292
|
4293 |
+
a4293
|
4294 |
+
a4294
|
4295 |
+
a4295
|
4296 |
+
a4296
|
4297 |
+
a4297
|
4298 |
+
a4298
|
4299 |
+
a4299
|
4300 |
+
a4300
|
4301 |
+
a4301
|
4302 |
+
a4302
|
4303 |
+
a4303
|
4304 |
+
a4304
|
4305 |
+
a4305
|
4306 |
+
a4306
|
4307 |
+
a4307
|
4308 |
+
a4308
|
4309 |
+
a4309
|
4310 |
+
a4310
|
4311 |
+
a4311
|
4312 |
+
a4312
|
4313 |
+
a4313
|
4314 |
+
a4314
|
4315 |
+
a4315
|
4316 |
+
a4316
|
4317 |
+
a4317
|
4318 |
+
a4318
|
4319 |
+
a4319
|
4320 |
+
a4320
|
4321 |
+
a4321
|
4322 |
+
a4322
|
4323 |
+
a4323
|
4324 |
+
a4324
|
4325 |
+
a4325
|
4326 |
+
a4326
|
4327 |
+
a4327
|
4328 |
+
a4328
|
4329 |
+
a4329
|
4330 |
+
a4330
|
4331 |
+
a4331
|
4332 |
+
a4332
|
4333 |
+
a4333
|
4334 |
+
a4334
|
4335 |
+
a4335
|
4336 |
+
a4336
|
4337 |
+
a4337
|
4338 |
+
a4338
|
4339 |
+
a4339
|
4340 |
+
a4340
|
4341 |
+
a4341
|
4342 |
+
a4342
|
4343 |
+
a4343
|
4344 |
+
a4344
|
4345 |
+
a4345
|
4346 |
+
a4346
|
4347 |
+
a4347
|
4348 |
+
a4348
|
4349 |
+
a4349
|
4350 |
+
a4350
|
4351 |
+
a4351
|
4352 |
+
a4352
|
4353 |
+
a4353
|
4354 |
+
a4354
|
4355 |
+
a4355
|
4356 |
+
a4356
|
4357 |
+
a4357
|
4358 |
+
a4358
|
4359 |
+
a4359
|
4360 |
+
a4360
|
4361 |
+
a4361
|
4362 |
+
a4362
|
4363 |
+
a4363
|
4364 |
+
a4364
|
4365 |
+
a4365
|
4366 |
+
a4366
|
4367 |
+
a4367
|
4368 |
+
a4368
|
4369 |
+
a4369
|
4370 |
+
a4370
|
4371 |
+
a4371
|
4372 |
+
a4372
|
4373 |
+
a4373
|
4374 |
+
a4374
|
4375 |
+
a4375
|
4376 |
+
a4376
|
4377 |
+
a4377
|
4378 |
+
a4378
|
4379 |
+
a4379
|
4380 |
+
a4380
|
4381 |
+
a4381
|
4382 |
+
a4382
|
4383 |
+
a4383
|
4384 |
+
a4384
|
4385 |
+
a4385
|
4386 |
+
a4386
|
4387 |
+
a4387
|
4388 |
+
a4388
|
4389 |
+
a4389
|
4390 |
+
a4390
|
4391 |
+
a4391
|
4392 |
+
a4392
|
4393 |
+
a4393
|
4394 |
+
a4394
|
4395 |
+
a4395
|
4396 |
+
a4396
|
4397 |
+
a4397
|
4398 |
+
a4398
|
4399 |
+
a4399
|
4400 |
+
a4400
|
4401 |
+
a4401
|
4402 |
+
a4402
|
4403 |
+
a4403
|
4404 |
+
a4404
|
4405 |
+
a4405
|
4406 |
+
a4406
|
4407 |
+
a4407
|
4408 |
+
a4408
|
4409 |
+
a4409
|
4410 |
+
a4410
|
4411 |
+
a4411
|
4412 |
+
a4412
|
4413 |
+
a4413
|
4414 |
+
a4414
|
4415 |
+
a4415
|
4416 |
+
a4416
|
4417 |
+
a4417
|
4418 |
+
a4418
|
4419 |
+
a4419
|
4420 |
+
a4420
|
4421 |
+
a4421
|
4422 |
+
a4422
|
4423 |
+
a4423
|
4424 |
+
a4424
|
4425 |
+
a4425
|
4426 |
+
a4426
|
4427 |
+
a4427
|
4428 |
+
a4428
|
4429 |
+
a4429
|
4430 |
+
a4430
|
4431 |
+
a4431
|
4432 |
+
a4432
|
4433 |
+
a4433
|
4434 |
+
a4434
|
4435 |
+
a4435
|
4436 |
+
a4436
|
4437 |
+
a4437
|
4438 |
+
a4438
|
4439 |
+
a4439
|
4440 |
+
a4440
|
4441 |
+
a4441
|
4442 |
+
a4442
|
4443 |
+
a4443
|
4444 |
+
a4444
|
4445 |
+
a4445
|
4446 |
+
a4446
|
4447 |
+
a4447
|
4448 |
+
a4448
|
4449 |
+
a4449
|
4450 |
+
a4450
|
4451 |
+
a4451
|
4452 |
+
a4452
|
4453 |
+
a4453
|
4454 |
+
a4454
|
4455 |
+
a4455
|
4456 |
+
a4456
|
4457 |
+
a4457
|
4458 |
+
a4458
|
4459 |
+
a4459
|
4460 |
+
a4460
|
4461 |
+
a4461
|
4462 |
+
a4462
|
4463 |
+
a4463
|
4464 |
+
a4464
|
4465 |
+
a4465
|
4466 |
+
a4466
|
4467 |
+
a4467
|
4468 |
+
a4468
|
4469 |
+
a4469
|
4470 |
+
a4470
|
4471 |
+
a4471
|
4472 |
+
a4472
|
4473 |
+
a4473
|
4474 |
+
a4474
|
4475 |
+
a4475
|
4476 |
+
a4476
|
4477 |
+
a4477
|
4478 |
+
a4478
|
4479 |
+
a4479
|
4480 |
+
a4480
|
4481 |
+
a4481
|
4482 |
+
a4482
|
4483 |
+
a4483
|
4484 |
+
a4484
|
4485 |
+
a4485
|
4486 |
+
a4486
|
4487 |
+
a4487
|
4488 |
+
a4488
|
4489 |
+
a4489
|
4490 |
+
a4490
|
4491 |
+
a4491
|
4492 |
+
a4492
|
4493 |
+
a4493
|
4494 |
+
a4494
|
4495 |
+
a4495
|
4496 |
+
a4496
|
4497 |
+
a4497
|
4498 |
+
a4498
|
4499 |
+
a4499
|
4500 |
+
a4500
|
models/attention_fusion.py
ADDED
@@ -0,0 +1,108 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from torch import nn
|
3 |
+
|
4 |
+
class LocalFusion(nn.Module):
|
5 |
+
def __init__(self, att_in_dim=3, num_categories=6, max_pool_ksize1=4, max_pool_ksize2=2, encoder_dims=[8, 16]):
|
6 |
+
super().__init__()
|
7 |
+
self.num_categories = num_categories
|
8 |
+
self.att_in_dim = att_in_dim
|
9 |
+
|
10 |
+
self.attention_fusion = nn.ModuleList([Self_Attn(in_dim=att_in_dim, max_pool_ksize1=max_pool_ksize1, max_pool_ksize2=max_pool_ksize2, encoder_dims=encoder_dims) for _ in range(num_categories)])
|
11 |
+
|
12 |
+
def forward(self, x, color_naming_probs=None, q=None):
|
13 |
+
|
14 |
+
# Using the average to compute the blending
|
15 |
+
if color_naming_probs is None:
|
16 |
+
# Using the same input tensor for query, key, and value
|
17 |
+
if q is None:
|
18 |
+
return torch.mean(torch.stack([att(x_color, q=x) for att, x_color in zip(self.attention_fusion, x)], dim=0))
|
19 |
+
else:
|
20 |
+
return torch.mean(torch.stack([att(x_color, q=q) for att, x_color in zip(self.attention_fusion, x)], dim=0))
|
21 |
+
|
22 |
+
# Using the color naming probabilities to compute the blending. Weighted average with color naming probs as
|
23 |
+
# weights.
|
24 |
+
else:
|
25 |
+
color_naming_probs = (color_naming_probs > 0.20).float()
|
26 |
+
color_naming_avg = torch.sum(color_naming_probs, dim=0).unsqueeze(1).repeat(1, 3, 1, 1)
|
27 |
+
color_naming_probs = color_naming_probs.unsqueeze(2).repeat(1, 1, 3, 1, 1)
|
28 |
+
|
29 |
+
# Using the same input tensor for query, key, and value
|
30 |
+
if q is None:
|
31 |
+
out = torch.stack([att(x_color, q=x) for att, x_color in zip(self.attention_fusion, x)], dim=0)
|
32 |
+
else:
|
33 |
+
out = torch.stack([att(x_color, q=q) for att, x_color in zip(self.attention_fusion, x)], dim=0)
|
34 |
+
|
35 |
+
out = torch.sum(out * color_naming_probs, dim=0) / color_naming_avg
|
36 |
+
return torch.clip(out, 0, 1)
|
37 |
+
|
38 |
+
class Self_Attn(nn.Module):
|
39 |
+
def __init__(self, in_dim, max_pool_ksize1=4, max_pool_ksize2=2, encoder_dims=[8, 16]):
|
40 |
+
super(Self_Attn, self).__init__()
|
41 |
+
self.chanel_in = in_dim
|
42 |
+
self.max_pool_ksize1 = max_pool_ksize1
|
43 |
+
self.max_pool_ksize2 = max_pool_ksize2
|
44 |
+
self.down_ratio = max_pool_ksize1 * max_pool_ksize2
|
45 |
+
|
46 |
+
self.query_conv = nn.Sequential(
|
47 |
+
nn.Conv2d(in_channels=in_dim, out_channels=encoder_dims[0], kernel_size=1),
|
48 |
+
nn.ReLU(),
|
49 |
+
nn.MaxPool2d(4, 4),
|
50 |
+
nn.Conv2d(in_channels=encoder_dims[0], out_channels=encoder_dims[1], kernel_size=1),
|
51 |
+
nn.ReLU(),
|
52 |
+
nn.MaxPool2d(2, 2))
|
53 |
+
|
54 |
+
self.key_conv = nn.Sequential(
|
55 |
+
nn.Conv2d(in_channels=in_dim, out_channels=encoder_dims[0], kernel_size=1),
|
56 |
+
nn.ReLU(),
|
57 |
+
nn.MaxPool2d(4, 4),
|
58 |
+
nn.Conv2d(in_channels=encoder_dims[0], out_channels=encoder_dims[1], kernel_size=1),
|
59 |
+
nn.ReLU(),
|
60 |
+
nn.MaxPool2d(2, 2))
|
61 |
+
|
62 |
+
self.value_conv = nn.Sequential(
|
63 |
+
nn.Conv2d(in_channels=in_dim, out_channels=encoder_dims[0], kernel_size=1),
|
64 |
+
nn.ReLU(),
|
65 |
+
nn.MaxPool2d(4, 4),
|
66 |
+
nn.Conv2d(in_channels=encoder_dims[0], out_channels=encoder_dims[1], kernel_size=1),
|
67 |
+
nn.ReLU(),
|
68 |
+
nn.MaxPool2d(2, 2))
|
69 |
+
|
70 |
+
self.upsample = nn.Sequential(
|
71 |
+
nn.Conv2d(in_channels=encoder_dims[1], out_channels=encoder_dims[0], kernel_size=1),
|
72 |
+
nn.ReLU(),
|
73 |
+
nn.UpsamplingNearest2d(scale_factor=4),
|
74 |
+
nn.Conv2d(in_channels=encoder_dims[0], out_channels=encoder_dims[0], kernel_size=1),
|
75 |
+
nn.ReLU(),
|
76 |
+
nn.Conv2d(in_channels=encoder_dims[0], out_channels=3, kernel_size=1),
|
77 |
+
nn.ReLU())
|
78 |
+
|
79 |
+
self.last_conv = nn.Conv2d(in_channels=3, out_channels=3, kernel_size=1)
|
80 |
+
|
81 |
+
self.gamma = nn.Parameter(torch.zeros(1))
|
82 |
+
|
83 |
+
self.max_pool = nn.MaxPool2d(2, 2)
|
84 |
+
self.softmax = nn.Softmax(dim=-1)
|
85 |
+
|
86 |
+
def forward(self, x, q=None):
|
87 |
+
|
88 |
+
if q is None:
|
89 |
+
q = x
|
90 |
+
|
91 |
+
m_batch_size, C, width, height = x.size()
|
92 |
+
proj_query = self.query_conv(q).view(m_batch_size, -1, int((width//self.down_ratio)*(height//self.down_ratio))).permute(0, 2, 1)
|
93 |
+
proj_key = self.key_conv(x).view(m_batch_size, -1, int((width//self.down_ratio)*(height//self.down_ratio)))
|
94 |
+
energy = torch.bmm(proj_query, proj_key)
|
95 |
+
attention = self.softmax(energy)
|
96 |
+
proj_value = self.value_conv(x).view(m_batch_size, -1, int((width//self.down_ratio)*(height//self.down_ratio)))
|
97 |
+
|
98 |
+
out = torch.bmm(proj_value, attention.permute(0, 2, 1))
|
99 |
+
out = out.view(m_batch_size, 16, int(width//self.down_ratio), int(height//self.down_ratio))
|
100 |
+
|
101 |
+
out = self.upsample(out)
|
102 |
+
upsampled_layer = nn.Upsample(size=x.size()[2:], mode='bilinear', align_corners=False)
|
103 |
+
out = upsampled_layer(out)
|
104 |
+
|
105 |
+
out = self.last_conv(out)
|
106 |
+
|
107 |
+
out = out + x
|
108 |
+
return out
|
models/backbone.py
ADDED
@@ -0,0 +1,234 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
backbone.py - Contains the backbone of the model.
|
3 |
+
(It is based on LPIENet and CURL's backbone)
|
4 |
+
|
5 |
+
Perceptual Image Enhancement for Smartphone Real-Time Applications
|
6 |
+
https://github.com/mv-lab/AISP
|
7 |
+
|
8 |
+
CURL: Neural Curve Layers for Global Image Enhancement
|
9 |
+
https://github.com/sjmoran/CURL
|
10 |
+
|
11 |
+
David Serrano (dserrano@cvc.uab.cat)
|
12 |
+
May 2024
|
13 |
+
"""
|
14 |
+
import torch
|
15 |
+
import torch.nn as nn
|
16 |
+
import torch.nn.functional as F
|
17 |
+
from typing import List
|
18 |
+
|
19 |
+
|
20 |
+
class AttentionBlock(nn.Module):
|
21 |
+
def __init__(self, dim: int):
|
22 |
+
super(AttentionBlock, self).__init__()
|
23 |
+
self._spatial_attention_conv = nn.Conv2d(2, dim, kernel_size=3, padding=1)
|
24 |
+
|
25 |
+
# Channel attention MLP
|
26 |
+
self._channel_attention_conv0 = nn.Conv2d(1, dim, kernel_size=1, padding=0)
|
27 |
+
self._channel_attention_conv1 = nn.Conv2d(dim, dim, kernel_size=1, padding=0)
|
28 |
+
|
29 |
+
self._out_conv = nn.Conv2d(2 * dim, dim, kernel_size=1, padding=0)
|
30 |
+
|
31 |
+
def forward(self, x: torch.Tensor):
|
32 |
+
if len(x.shape) != 4:
|
33 |
+
raise ValueError(f"Expected [B, C, H, W] input, got {x.shape}.")
|
34 |
+
|
35 |
+
# Spatial attention
|
36 |
+
mean = torch.mean(x, dim=1, keepdim=True) # Mean/Max on C axis
|
37 |
+
max, _ = torch.max(x, dim=1, keepdim=True)
|
38 |
+
spatial_attention = torch.cat([mean, max], dim=1) # [B, 2, H, W]
|
39 |
+
spatial_attention = self._spatial_attention_conv(spatial_attention)
|
40 |
+
spatial_attention = torch.sigmoid(spatial_attention) * x
|
41 |
+
|
42 |
+
# NOTE: This differs from CBAM as it uses Channel pooling, not spatial pooling!
|
43 |
+
# In a way, this is 2x spatial attention
|
44 |
+
channel_attention = torch.relu(self._channel_attention_conv0(mean))
|
45 |
+
channel_attention = self._channel_attention_conv1(channel_attention)
|
46 |
+
channel_attention = torch.sigmoid(channel_attention) * x
|
47 |
+
|
48 |
+
attention = torch.cat([spatial_attention, channel_attention], dim=1) # [B, 2*dim, H, W]
|
49 |
+
attention = self._out_conv(attention)
|
50 |
+
return x + attention
|
51 |
+
|
52 |
+
|
53 |
+
class InverseBlock(nn.Module):
|
54 |
+
def __init__(self, input_channels: int, channels: int):
|
55 |
+
super(InverseBlock, self).__init__()
|
56 |
+
|
57 |
+
self._conv0 = nn.Conv2d(input_channels, channels, kernel_size=1)
|
58 |
+
self._dw_conv = nn.Conv2d(channels, channels, kernel_size=3, padding=1, groups=channels)
|
59 |
+
self._conv1 = nn.Conv2d(channels, channels, kernel_size=1)
|
60 |
+
self._conv2 = nn.Conv2d(input_channels, channels, kernel_size=1)
|
61 |
+
|
62 |
+
def forward(self, x: torch.Tensor):
|
63 |
+
features = self._conv0(x)
|
64 |
+
features = F.elu(self._dw_conv(features))
|
65 |
+
features = self._conv1(features)
|
66 |
+
|
67 |
+
x = torch.relu(self._conv2(x))
|
68 |
+
return x + features
|
69 |
+
|
70 |
+
|
71 |
+
class BaseBlock(nn.Module):
|
72 |
+
def __init__(self, channels: int):
|
73 |
+
super(BaseBlock, self).__init__()
|
74 |
+
|
75 |
+
self._conv0 = nn.Conv2d(channels, channels, kernel_size=1)
|
76 |
+
self._dw_conv = nn.Conv2d(channels, channels, kernel_size=3, padding=1, groups=channels)
|
77 |
+
self._conv1 = nn.Conv2d(channels, channels, kernel_size=1)
|
78 |
+
|
79 |
+
self._conv2 = nn.Conv2d(channels, channels, kernel_size=1)
|
80 |
+
self._conv3 = nn.Conv2d(channels, channels, kernel_size=1)
|
81 |
+
|
82 |
+
def forward(self, x: torch.Tensor):
|
83 |
+
features = self._conv0(x)
|
84 |
+
features = F.elu(self._dw_conv(features))
|
85 |
+
features = self._conv1(features)
|
86 |
+
x = x + features
|
87 |
+
|
88 |
+
features = F.elu(self._conv2(x))
|
89 |
+
features = self._conv3(features)
|
90 |
+
return x + features
|
91 |
+
|
92 |
+
|
93 |
+
class AttentionTail(nn.Module):
|
94 |
+
def __init__(self, channels: int):
|
95 |
+
super(AttentionTail, self).__init__()
|
96 |
+
|
97 |
+
self._conv0 = nn.Conv2d(channels, channels, kernel_size=7, padding=3)
|
98 |
+
self._conv1 = nn.Conv2d(channels, channels, kernel_size=5, padding=2)
|
99 |
+
self._conv2 = nn.Conv2d(channels, channels, kernel_size=3, padding=1)
|
100 |
+
|
101 |
+
def forward(self, x: torch.Tensor):
|
102 |
+
attention = torch.relu(self._conv0(x))
|
103 |
+
attention = torch.relu(self._conv1(attention))
|
104 |
+
attention = torch.sigmoid(self._conv2(attention))
|
105 |
+
return x * attention
|
106 |
+
|
107 |
+
class Flatten(nn.Module):
|
108 |
+
|
109 |
+
def forward(self, x):
|
110 |
+
"""Flatten a Tensor to a Vector
|
111 |
+
|
112 |
+
:param x: Tensor
|
113 |
+
:returns: 1D Tensor
|
114 |
+
:rtype: Tensor
|
115 |
+
|
116 |
+
"""
|
117 |
+
return x.view(x.size()[0], -1)
|
118 |
+
|
119 |
+
class ResidualConnection(nn.Module):
|
120 |
+
def __init__(self, in_channels):
|
121 |
+
super(ResidualConnection, self).__init__()
|
122 |
+
|
123 |
+
self.in_channels = in_channels
|
124 |
+
|
125 |
+
self.midnet2 = nn.Sequential(
|
126 |
+
nn.Conv2d(in_channels, 64, 3, 1, 2, 2),
|
127 |
+
nn.LeakyReLU(),
|
128 |
+
nn.Conv2d(64, 64, 3, 1, 2, 2),
|
129 |
+
nn.LeakyReLU()
|
130 |
+
)
|
131 |
+
|
132 |
+
self.midnet4 = nn.Sequential(
|
133 |
+
nn.Conv2d(in_channels, 64, 3, 1, 4, 4),
|
134 |
+
nn.LeakyReLU(),
|
135 |
+
nn.Conv2d(64, 64, 3, 1, 4, 4),
|
136 |
+
nn.LeakyReLU()
|
137 |
+
)
|
138 |
+
|
139 |
+
self.globnet = nn.Sequential(
|
140 |
+
nn.Conv2d(in_channels, 64, 3, 2, 1, 1),
|
141 |
+
nn.LeakyReLU(),
|
142 |
+
nn.MaxPool2d(kernel_size=3, stride=2, padding=1),
|
143 |
+
nn.Conv2d(64, 64, 3, 2, 1, 1),
|
144 |
+
nn.LeakyReLU(),
|
145 |
+
nn.MaxPool2d(kernel_size=3, stride=2, padding=1),
|
146 |
+
nn.Conv2d(64, 64, 3, 2, 1, 1),
|
147 |
+
nn.LeakyReLU(),
|
148 |
+
nn.AdaptiveAvgPool2d(1),
|
149 |
+
Flatten(),
|
150 |
+
nn.Dropout(0.5),
|
151 |
+
nn.Linear(64, 64)
|
152 |
+
)
|
153 |
+
|
154 |
+
self.conv_fuse = nn.Conv2d(in_channels=192+in_channels, out_channels=in_channels, kernel_size=1)
|
155 |
+
def forward(self, x):
|
156 |
+
|
157 |
+
x_midnet2 = self.midnet2(x)
|
158 |
+
x_midnet4 = self.midnet4(x)
|
159 |
+
x_global = self.globnet(x).unsqueeze(2).unsqueeze(3)
|
160 |
+
x_global = x_global.repeat(1, 1, x_midnet2.shape[2], x_midnet2.shape[3])
|
161 |
+
|
162 |
+
x_fuse = torch.cat((x, x_midnet2, x_midnet4, x_global), dim=1)
|
163 |
+
x_out = self.conv_fuse(x_fuse)
|
164 |
+
|
165 |
+
return x_out
|
166 |
+
|
167 |
+
class Backbone(nn.Module):
|
168 |
+
def __init__(self, input_channels: int, output_channels: int, encoder_dims: List[int], decoder_dims: List[int]):
|
169 |
+
super(Backbone, self).__init__()
|
170 |
+
|
171 |
+
if len(encoder_dims) != len(decoder_dims) + 1 or len(decoder_dims) < 1:
|
172 |
+
raise ValueError(f"Unexpected encoder and decoder dims: {encoder_dims}, {decoder_dims}.")
|
173 |
+
|
174 |
+
if input_channels != output_channels:
|
175 |
+
raise NotImplementedError()
|
176 |
+
|
177 |
+
encoders = []
|
178 |
+
for i, encoder_dim in enumerate(encoder_dims):
|
179 |
+
input_dim = input_channels if i == 0 else encoder_dims[i - 1]
|
180 |
+
encoders.append(
|
181 |
+
nn.Sequential(
|
182 |
+
nn.Conv2d(input_dim, encoder_dim, kernel_size=3, padding=1),
|
183 |
+
BaseBlock(encoder_dim),
|
184 |
+
BaseBlock(encoder_dim),
|
185 |
+
AttentionBlock(encoder_dim),
|
186 |
+
)
|
187 |
+
)
|
188 |
+
self._encoders = nn.ModuleList(encoders)
|
189 |
+
|
190 |
+
decoders = []
|
191 |
+
for i, decoder_dim in enumerate(decoder_dims):
|
192 |
+
input_dim = encoder_dims[-1] if i == 0 else decoder_dims[i - 1] + encoder_dims[-i - 1]
|
193 |
+
decoders.append(
|
194 |
+
nn.Sequential(
|
195 |
+
nn.Conv2d(input_dim, decoder_dim, kernel_size=3, padding=1),
|
196 |
+
BaseBlock(decoder_dim),
|
197 |
+
BaseBlock(decoder_dim),
|
198 |
+
AttentionBlock(decoder_dim),
|
199 |
+
)
|
200 |
+
)
|
201 |
+
self._decoders = nn.ModuleList(decoders)
|
202 |
+
|
203 |
+
self._inverse_bock = InverseBlock(encoder_dims[0] + decoder_dims[-1], output_channels)
|
204 |
+
self._attention_tail = AttentionTail(output_channels)
|
205 |
+
|
206 |
+
residual_connections = []
|
207 |
+
for i, decoder_dim in enumerate(encoder_dims):
|
208 |
+
residual_connections.append(
|
209 |
+
ResidualConnection(in_channels=decoder_dim)
|
210 |
+
)
|
211 |
+
self._residual_connections = nn.ModuleList(residual_connections)
|
212 |
+
def forward(self, x: torch.Tensor):
|
213 |
+
if len(x.shape) != 4:
|
214 |
+
raise ValueError(f"Expected [B, C, H, W] input, got {x.shape}.")
|
215 |
+
global_residual = x
|
216 |
+
|
217 |
+
encoder_outputs, residual_connections = [], []
|
218 |
+
for i, encoder in enumerate(self._encoders):
|
219 |
+
x = encoder(x)
|
220 |
+
if i != len(self._encoders) - 1:
|
221 |
+
encoder_outputs.append(x)
|
222 |
+
residual_connections.append(self._residual_connections[i](x))
|
223 |
+
x = F.max_pool2d(x, kernel_size=2)
|
224 |
+
|
225 |
+
encoder_outputs.reverse()
|
226 |
+
residual_connections.reverse()
|
227 |
+
for i, decoder in enumerate(self._decoders):
|
228 |
+
x = decoder(x)
|
229 |
+
x = nn.Upsample(size=encoder_outputs[i].shape[2:], mode='bilinear', align_corners=False)(x)
|
230 |
+
x = torch.cat([x, residual_connections[i]], dim=1)
|
231 |
+
|
232 |
+
x = self._inverse_bock(x)
|
233 |
+
x = self._attention_tail(x)
|
234 |
+
return torch.clip(x + global_residual, 0, 1)
|
models/bezier_control_point_estimator.py
ADDED
@@ -0,0 +1,90 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
bezier_control_point_estimator.py - Contains the Bezier Control Point Estimator model.
|
3 |
+
The Bezier Control Point Estimator estimates the set of control points that define the Bezier curve for each color name.
|
4 |
+
|
5 |
+
David Serrano (dserrano@cvc.uab.cat)
|
6 |
+
May 2024
|
7 |
+
"""
|
8 |
+
|
9 |
+
import torch
|
10 |
+
from torch import nn
|
11 |
+
|
12 |
+
class ContextualFeatureExtractor(nn.Module):
|
13 |
+
def __init__(self):
|
14 |
+
super().__init__()
|
15 |
+
self.main = nn.Sequential(
|
16 |
+
nn.Conv2d(3, 8, 3, 1, 1),
|
17 |
+
nn.ReLU(),
|
18 |
+
nn.Conv2d(8, 16, 3, 1, 1),
|
19 |
+
nn.ReLU(),
|
20 |
+
nn.Conv2d(16, 32, 3, 1, 1),
|
21 |
+
nn.ReLU(),
|
22 |
+
nn.Dropout(0.2),
|
23 |
+
nn.Conv2d(32, 64, 3, 1, 1),
|
24 |
+
nn.ReLU())
|
25 |
+
|
26 |
+
def forward(self, x):
|
27 |
+
return self.main(x)
|
28 |
+
|
29 |
+
class BezierColorBranch(nn.Module):
|
30 |
+
def __init__(self, num_control_points=10):
|
31 |
+
super().__init__()
|
32 |
+
self.num_control_points = num_control_points # +1, (0, 0) point
|
33 |
+
self.color_branch = nn.Sequential(
|
34 |
+
nn.Conv2d(65, 64, 3, 1, 1),
|
35 |
+
nn.ReLU(),
|
36 |
+
nn.MaxPool2d(2, 2),
|
37 |
+
nn.Conv2d(64, 32, 3, 1, 1),
|
38 |
+
nn.ReLU(),
|
39 |
+
nn.MaxPool2d(2, 2),
|
40 |
+
nn.Conv2d(32, 32, 3, 1, 1),
|
41 |
+
nn.ReLU(),
|
42 |
+
nn.Conv2d(32, 3 * self.num_control_points, 3, 1, 1),
|
43 |
+
nn.AdaptiveAvgPool2d((1, 1)))
|
44 |
+
|
45 |
+
self.sigmoid = nn.Sigmoid()
|
46 |
+
|
47 |
+
def create_control_points(self, x):
|
48 |
+
x = torch.cumsum(torch.cat([torch.zeros_like(x[..., :1]), x], dim=-1), dim=-1)
|
49 |
+
x = torch.stack([x, torch.linspace(0, 1, steps=self.num_control_points+1).unsqueeze(0).repeat(x.shape[0], x.shape[1], 1).cuda()], dim=-1)
|
50 |
+
return x
|
51 |
+
|
52 |
+
def forward(self, x):
|
53 |
+
x = self.color_branch(x).view(x.size(0), 3, self.num_control_points)
|
54 |
+
x = self.sigmoid(x)
|
55 |
+
x = x / torch.sum(x, dim=2)[..., None]
|
56 |
+
x = self.create_control_points(x)
|
57 |
+
return x
|
58 |
+
|
59 |
+
class BCPE(nn.Module):
|
60 |
+
def __init__(self, num_categories=6, num_control_points=10):
|
61 |
+
super().__init__()
|
62 |
+
|
63 |
+
self.contextual_feature_extractor = ContextualFeatureExtractor()
|
64 |
+
self.color_branches = nn.ModuleList([BezierColorBranch(num_control_points) for _ in range(num_categories)])
|
65 |
+
|
66 |
+
def binomial_coefficient(self, n, k):
|
67 |
+
"""
|
68 |
+
Calculate the binomial coefficient (n choose k).
|
69 |
+
"""
|
70 |
+
if k < 0 or k > n:
|
71 |
+
return 0.0
|
72 |
+
result = 1.0
|
73 |
+
for i in range(min(k, n - k)):
|
74 |
+
result *= (n - i)
|
75 |
+
result //= (i + 1)
|
76 |
+
return result
|
77 |
+
|
78 |
+
def apply_cubic_bezier(self, x, control_points):
|
79 |
+
|
80 |
+
n = control_points.shape[2]
|
81 |
+
output = torch.zeros_like(x)
|
82 |
+
for j in range(n):
|
83 |
+
output += control_points[..., j, 0].view(control_points.shape[0], control_points.shape[1], 1, 1) * self.binomial_coefficient(n - 1, j) * (1 - x) ** (n - 1 - j) * x ** j
|
84 |
+
return output
|
85 |
+
|
86 |
+
def forward(self, x, cn_probs):
|
87 |
+
feat = self.contextual_feature_extractor(x)
|
88 |
+
bezier_control_points = [color_branch(torch.cat((feat, color_probs.unsqueeze(1)), dim=1).float()) for color_branch, color_probs in zip(self.color_branches, cn_probs)]
|
89 |
+
global_adjusted_images = torch.stack([self.apply_cubic_bezier(x, control_points) for control_points in bezier_control_points], dim=0)
|
90 |
+
return global_adjusted_images
|
models/color_naming.py
ADDED
@@ -0,0 +1,70 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
color_naming.py - Contains the Joost van de Weijer et al. (2009) color naming model.
|
3 |
+
|
4 |
+
David Serrano (dserrano@cvc.uab.cat)
|
5 |
+
May 2024
|
6 |
+
"""
|
7 |
+
|
8 |
+
import os
|
9 |
+
import pathlib
|
10 |
+
from scipy.io import loadmat
|
11 |
+
import torch
|
12 |
+
from torch import tensor as to_tensor
|
13 |
+
from torchvision.transforms.functional import pil_to_tensor
|
14 |
+
|
15 |
+
class ColorNaming():
|
16 |
+
def __init__(self, matrix_path=os.path.join(str(pathlib.Path(__file__).parent.resolve()), "joost_color_naming.mat"),
|
17 |
+
num_categories=6,
|
18 |
+
device='cuda'):
|
19 |
+
""" Van de Weijer et al. (2009) Color Naming model python implementation.
|
20 |
+
Van De Weijer, J. et al. Learning color names for real-world applications. IEEE Transactions on Image Processing
|
21 |
+
The class is based on the MATLAB implementation by Van de Weijer et al. (2009) and it needs the w2c.mat original
|
22 |
+
file. The input RGB image is converted to a set (6 or 11) color naming probability maps.
|
23 |
+
|
24 |
+
If num_categories is 6: orange-brown-yellow, achromatic, pink-purple, red, green, blue.
|
25 |
+
If num_categories is 11: black, blue, brown, gray, green, orange, pink, purple, red, white, yellow.
|
26 |
+
"""
|
27 |
+
self.matrix = to_tensor(loadmat(matrix_path)['w2c']).to(device)
|
28 |
+
self.num_categories = num_categories
|
29 |
+
self.device = device
|
30 |
+
|
31 |
+
if num_categories == 6:
|
32 |
+
self.color_categories = [[2,5,10], [0,3,9], [6,7], [8], [4], [1]]
|
33 |
+
self.color_categories = [torch.tensor(x).to(device) for x in self.color_categories]
|
34 |
+
|
35 |
+
def __call__(self, input_tensor):
|
36 |
+
"""Converts an RGB image to a color naming image.
|
37 |
+
|
38 |
+
Args:
|
39 |
+
input_tensor: batch of RGB images (B x 3 x H x W)
|
40 |
+
|
41 |
+
Returns:
|
42 |
+
torch.tensor: Color naming image.
|
43 |
+
"""
|
44 |
+
# Reconvert image to [0-255] range
|
45 |
+
input_tensor = torch.clamp(input_tensor, 0, 1)
|
46 |
+
img = (input_tensor * 255).int()
|
47 |
+
|
48 |
+
index_tensor = torch.floor(
|
49 |
+
img[:, 0, ...].view(img.shape[0], -1) / 8).long() + 32 * torch.floor(
|
50 |
+
img[:, 1, ...].view(img.shape[0], -1) / 8).long() + 32 * 32 * torch.floor(
|
51 |
+
img[:, 2, ...].view(img.shape[0], -1) / 8).long()
|
52 |
+
|
53 |
+
prob_maps = []
|
54 |
+
for w2cM in self.matrix.permute(*torch.arange(self.matrix.ndim-1, -1, -1)):
|
55 |
+
out = w2cM[index_tensor].view(input_tensor.size(0), input_tensor.size(2), input_tensor.size(3))
|
56 |
+
prob_maps.append(out)
|
57 |
+
prob_maps = torch.stack(prob_maps, dim=0)
|
58 |
+
|
59 |
+
if self.num_categories == 11:
|
60 |
+
return prob_maps
|
61 |
+
|
62 |
+
elif self.num_categories == 6:
|
63 |
+
category_probs = [] # prob maps for each color category. [0, 1]
|
64 |
+
for category in self.color_categories:
|
65 |
+
cat_tensors = torch.index_select(prob_maps, 0, category).sum(dim=0)
|
66 |
+
category_probs.append(cat_tensors)
|
67 |
+
|
68 |
+
category_probs = torch.stack(category_probs, dim=0)
|
69 |
+
|
70 |
+
return category_probs
|
models/interactive_model.py
ADDED
@@ -0,0 +1,125 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""NamedCurves model with interactive functionality. This version builds upon model.py and bezier_control_point_estimator.py by incorporating additional parameters."""
|
2 |
+
|
3 |
+
from models.attention_fusion import LocalFusion
|
4 |
+
from models.color_naming import ColorNaming
|
5 |
+
from models.backbone import Backbone
|
6 |
+
from torch import nn
|
7 |
+
|
8 |
+
from PIL import Image
|
9 |
+
from torchvision.transforms import functional as TF
|
10 |
+
import torch
|
11 |
+
|
12 |
+
class NamedCurves(nn.Module):
|
13 |
+
def __init__(self, configs: dict):
|
14 |
+
super().__init__()
|
15 |
+
self.model_configs = configs
|
16 |
+
|
17 |
+
self.backbone = Backbone(**configs['backbone']['params'])
|
18 |
+
self.color_naming = ColorNaming(num_categories=configs['color_naming']['num_categories'])
|
19 |
+
self.bcpe = BCPE(**configs['bezier_control_points_estimator']['params'])
|
20 |
+
self.local_fusion = LocalFusion(**configs['local_fusion']['params'])
|
21 |
+
|
22 |
+
def forward(self, x, return_backbone=False, return_curves=False, control_points=None):
|
23 |
+
x_backbone = self.backbone(x)
|
24 |
+
cn_probs = self.color_naming(x_backbone)
|
25 |
+
|
26 |
+
if return_curves:
|
27 |
+
x_global, control_points = self.bcpe(x_backbone, cn_probs, return_control_points=return_curves, control_points=control_points)
|
28 |
+
else:
|
29 |
+
x_global = self.bcpe(x_backbone, cn_probs, control_points=control_points)
|
30 |
+
|
31 |
+
out = self.local_fusion(x_global, cn_probs, q=x_backbone)
|
32 |
+
|
33 |
+
if return_backbone:
|
34 |
+
return out, x_backbone
|
35 |
+
if return_curves:
|
36 |
+
return out, control_points
|
37 |
+
return out
|
38 |
+
|
39 |
+
class ContextualFeatureExtractor(nn.Module):
|
40 |
+
def __init__(self):
|
41 |
+
super().__init__()
|
42 |
+
self.main = nn.Sequential(
|
43 |
+
nn.Conv2d(3, 8, 3, 1, 1),
|
44 |
+
nn.ReLU(),
|
45 |
+
nn.Conv2d(8, 16, 3, 1, 1),
|
46 |
+
nn.ReLU(),
|
47 |
+
nn.Conv2d(16, 32, 3, 1, 1),
|
48 |
+
nn.ReLU(),
|
49 |
+
nn.Dropout(0.2),
|
50 |
+
nn.Conv2d(32, 64, 3, 1, 1),
|
51 |
+
nn.ReLU())
|
52 |
+
|
53 |
+
def forward(self, x):
|
54 |
+
return self.main(x)
|
55 |
+
|
56 |
+
class BezierColorBranch(nn.Module):
|
57 |
+
def __init__(self, num_control_points=10):
|
58 |
+
super().__init__()
|
59 |
+
self.num_control_points = num_control_points # +1, (0, 0) point
|
60 |
+
self.color_branch = nn.Sequential(
|
61 |
+
nn.Conv2d(65, 64, 3, 1, 1),
|
62 |
+
nn.ReLU(),
|
63 |
+
nn.MaxPool2d(2, 2),
|
64 |
+
nn.Conv2d(64, 32, 3, 1, 1),
|
65 |
+
nn.ReLU(),
|
66 |
+
nn.MaxPool2d(2, 2),
|
67 |
+
nn.Conv2d(32, 32, 3, 1, 1),
|
68 |
+
nn.ReLU(),
|
69 |
+
nn.Conv2d(32, 3 * self.num_control_points, 3, 1, 1),
|
70 |
+
nn.AdaptiveAvgPool2d((1, 1)))
|
71 |
+
|
72 |
+
self.sigmoid = nn.Sigmoid()
|
73 |
+
|
74 |
+
def create_control_points(self, x):
|
75 |
+
x = torch.cumsum(torch.cat([torch.zeros_like(x[..., :1]), x], dim=-1), dim=-1)
|
76 |
+
x = torch.stack([x, torch.linspace(0, 1, steps=self.num_control_points+1).unsqueeze(0).repeat(x.shape[0], x.shape[1], 1).cuda()], dim=-1)
|
77 |
+
return x
|
78 |
+
|
79 |
+
def forward(self, x):
|
80 |
+
x = self.color_branch(x).view(x.size(0), 3, self.num_control_points)
|
81 |
+
x = self.sigmoid(x)
|
82 |
+
x = x / torch.sum(x, dim=2)[..., None]
|
83 |
+
x = self.create_control_points(x)
|
84 |
+
return x
|
85 |
+
|
86 |
+
class BCPE(nn.Module):
|
87 |
+
def __init__(self, num_categories=6, num_control_points=10):
|
88 |
+
super().__init__()
|
89 |
+
|
90 |
+
self.contextual_feature_extractor = ContextualFeatureExtractor()
|
91 |
+
self.color_branches = nn.ModuleList([BezierColorBranch(num_control_points) for _ in range(num_categories)])
|
92 |
+
|
93 |
+
def binomial_coefficient(self, n, k):
|
94 |
+
"""
|
95 |
+
Calculate the binomial coefficient (n choose k).
|
96 |
+
"""
|
97 |
+
if k < 0 or k > n:
|
98 |
+
return 0.0
|
99 |
+
result = 1.0
|
100 |
+
for i in range(min(k, n - k)):
|
101 |
+
result *= (n - i)
|
102 |
+
result //= (i + 1)
|
103 |
+
return result
|
104 |
+
|
105 |
+
def apply_cubic_bezier(self, x, control_points):
|
106 |
+
|
107 |
+
n = control_points.shape[2]
|
108 |
+
output = torch.zeros_like(x)
|
109 |
+
for j in range(n):
|
110 |
+
output += control_points[..., j, 0].view(control_points.shape[0], control_points.shape[1], 1, 1) * self.binomial_coefficient(n - 1, j) * (1 - x) ** (n - 1 - j) * x ** j
|
111 |
+
return output
|
112 |
+
|
113 |
+
def forward(self, x, cn_probs, return_control_points=False, control_points=None):
|
114 |
+
feat = self.contextual_feature_extractor(x)
|
115 |
+
bezier_control_points = [color_branch(torch.cat((feat, color_probs.unsqueeze(1)), dim=1).float()) for color_branch, color_probs in zip(self.color_branches, cn_probs)]
|
116 |
+
|
117 |
+
if control_points is not None:
|
118 |
+
bezier_control_points = control_points
|
119 |
+
|
120 |
+
global_adjusted_images = torch.stack([self.apply_cubic_bezier(x, control_points) for control_points in bezier_control_points], dim=0)
|
121 |
+
|
122 |
+
if return_control_points:
|
123 |
+
return global_adjusted_images, bezier_control_points
|
124 |
+
|
125 |
+
return global_adjusted_images
|
models/joost_color_naming.mat
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:97b1f0ecd0fbecd122de319eacf3b5e23293defb06c40aa37a0446fb11d9cf45
|
3 |
+
size 2734783
|
models/model.py
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from models.attention_fusion import LocalFusion
|
2 |
+
from models.bezier_control_point_estimator import BCPE
|
3 |
+
from models.color_naming import ColorNaming
|
4 |
+
from models.backbone import Backbone
|
5 |
+
from torch import nn
|
6 |
+
|
7 |
+
from PIL import Image
|
8 |
+
from torchvision.transforms import functional as TF
|
9 |
+
import torch
|
10 |
+
|
11 |
+
class NamedCurves(nn.Module):
|
12 |
+
def __init__(self, configs: dict):
|
13 |
+
super().__init__()
|
14 |
+
self.model_configs = configs
|
15 |
+
|
16 |
+
self.backbone = Backbone(**configs['backbone']['params'])
|
17 |
+
self.color_naming = ColorNaming(num_categories=configs['color_naming']['num_categories'])
|
18 |
+
self.bcpe = BCPE(**configs['bezier_control_points_estimator']['params'])
|
19 |
+
self.local_fusion = LocalFusion(**configs['local_fusion']['params'])
|
20 |
+
|
21 |
+
def forward(self, x, return_backbone=False):
|
22 |
+
x_backbone = self.backbone(x)
|
23 |
+
cn_probs = self.color_naming(x_backbone)
|
24 |
+
x_global = self.bcpe(x_backbone, cn_probs)
|
25 |
+
out = self.local_fusion(x_global, cn_probs, q=x_backbone)
|
26 |
+
if return_backbone:
|
27 |
+
return out, x_backbone
|
28 |
+
return out
|
output/a4957-input.png
ADDED
requirements.txt
ADDED
@@ -0,0 +1,33 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
antlr4-python3-runtime
|
2 |
+
certifi
|
3 |
+
charset-normalizer
|
4 |
+
contourpy
|
5 |
+
cycler
|
6 |
+
fonttools
|
7 |
+
idna
|
8 |
+
imageio
|
9 |
+
importlib_resources
|
10 |
+
kiwisolver
|
11 |
+
lazy_loader
|
12 |
+
lightning-utilities
|
13 |
+
lpips==
|
14 |
+
matplotlib
|
15 |
+
networkx
|
16 |
+
numpy
|
17 |
+
omegaconf
|
18 |
+
packaging
|
19 |
+
pillow
|
20 |
+
pyparsing
|
21 |
+
python-dateutil
|
22 |
+
PyWavelets
|
23 |
+
PyYAML
|
24 |
+
requests
|
25 |
+
scikit-image
|
26 |
+
scipy
|
27 |
+
six
|
28 |
+
tifffile
|
29 |
+
torchmetrics
|
30 |
+
tqdm
|
31 |
+
typing_extensions
|
32 |
+
urllib3
|
33 |
+
zipp
|
scripts/download_checkpoints.sh
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/bin/bash
|
2 |
+
|
3 |
+
mkdir pretrained
|
4 |
+
wget https://github.com/davidserra9/namedcurves/releases/download/v1.0/mit5k_dpe_psnr_24.91.pth -P pretrained
|
5 |
+
wget https://github.com/davidserra9/namedcurves/releases/download/v1.0/mit5k_uegan_psnr_25.59.pth -P pretrained
|
6 |
+
wget https://github.com/davidserra9/namedcurves/releases/download/v1.0/ppr10k_a_psnr_26.81.pth -P pretrained
|
7 |
+
wget https://github.com/davidserra9/namedcurves/releases/download/v1.0/ppr10k_b_psnr_25.91.pth -P pretrained
|
8 |
+
wget https://github.com/davidserra9/namedcurves/releases/download/v1.0/ppr10k_c_psnr_25.69.pth -P pretrained
|
9 |
+
|
scripts/generate_naming_maps.py
ADDED
@@ -0,0 +1,29 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import argparse
|
3 |
+
import os.path
|
4 |
+
from PIL import Image
|
5 |
+
from models.color_naming import ColorNaming
|
6 |
+
from torchvision.transforms import functional as TF
|
7 |
+
|
8 |
+
def parse_args():
|
9 |
+
parser = argparse.ArgumentParser()
|
10 |
+
parser.add_argument('--num_categories', type=int, default=6)
|
11 |
+
parser.add_argument('--image_path', type=str, default='/home/dserrano/Documents/datasets/FiveK-DPE/input/a0001-jmac_DSC1459.png')
|
12 |
+
parser.add_argument('--output_path', type=str)
|
13 |
+
return parser.parse_args()
|
14 |
+
|
15 |
+
if __name__ == "__main__":
|
16 |
+
args = parse_args()
|
17 |
+
color_naming = ColorNaming(num_categories=args.num_categories)
|
18 |
+
|
19 |
+
if os.path.isfile(args.image_path):
|
20 |
+
image_tensor = TF.pil_to_tensor(Image.open(args.image_path).convert('RGB')).unsqueeze(0)
|
21 |
+
cn_probs = color_naming(image_tensor).float().repeat(1, 3, 1, 1).cpu()
|
22 |
+
output_images = (1 - cn_probs) * 255 * torch.ones_like(image_tensor).repeat(args.num_categories, 1, 1, 1) + cn_probs * image_tensor.repeat(args.num_categories, 1, 1, 1)
|
23 |
+
|
24 |
+
import matplotlib.pyplot as plt
|
25 |
+
fig = plt.subplots(1, args.num_categories, figsize=(20, 20))
|
26 |
+
for i in range(args.num_categories):
|
27 |
+
plt.subplot(1, args.num_categories, i+1)
|
28 |
+
plt.imshow(output_images[i].permute(1, 2, 0).numpy().astype('uint8'))
|
29 |
+
plt.show()
|
test.py
ADDED
@@ -0,0 +1,41 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import argparse
|
2 |
+
from models.model import NamedCurves
|
3 |
+
import torch
|
4 |
+
import os
|
5 |
+
from omegaconf import OmegaConf
|
6 |
+
from glob import glob
|
7 |
+
from PIL import Image
|
8 |
+
from torchvision.transforms import functional as TF
|
9 |
+
|
10 |
+
def parse_args():
|
11 |
+
parser = argparse.ArgumentParser()
|
12 |
+
parser.add_argument('--input_path', type=str, default='assets/a4957-input.png')
|
13 |
+
parser.add_argument('--output_path', type=str, default='output/')
|
14 |
+
parser.add_argument('--model_path', type=str, default='/home/dserrano/Workspace/Color-Naming-Image-Enhancement/pretrained/mit5k_uegan_psnr_25.59.pth')
|
15 |
+
parser.add_argument('--config_path', type=str, default='configs/mit5k_dpe_config.yaml')
|
16 |
+
return parser.parse_args()
|
17 |
+
|
18 |
+
def main():
|
19 |
+
args = parse_args()
|
20 |
+
config = OmegaConf.load(args.config_path)
|
21 |
+
model = NamedCurves(config.model).cuda()
|
22 |
+
model.load_state_dict(torch.load(args.model_path)["model_state_dict"])
|
23 |
+
|
24 |
+
if not os.path.exists(args.output_path):
|
25 |
+
os.makedirs(args.output_path)
|
26 |
+
|
27 |
+
#check if input_path is a folder
|
28 |
+
if os.path.isdir(args.input_path):
|
29 |
+
input_paths = glob(sorted(args.input_path + '/*'))
|
30 |
+
|
31 |
+
else:
|
32 |
+
input_paths = [args.input_path]
|
33 |
+
|
34 |
+
for input_path in input_paths:
|
35 |
+
input_tensor = TF.to_tensor(Image.open(input_path)).unsqueeze(0)
|
36 |
+
output = model(input_tensor.cuda())
|
37 |
+
output = TF.to_pil_image(output[0].cpu())
|
38 |
+
output.save(os.path.join(args.output_path, os.path.basename(input_path)))
|
39 |
+
|
40 |
+
if __name__ == '__main__':
|
41 |
+
main()
|
train.py
ADDED
@@ -0,0 +1,73 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import datetime
|
3 |
+
import os
|
4 |
+
import logging
|
5 |
+
|
6 |
+
import omegaconf
|
7 |
+
|
8 |
+
from utils.logger import prepare_logging
|
9 |
+
from torch.utils.data import DataLoader
|
10 |
+
from data.datasets import get_datasets
|
11 |
+
from models.model import NamingEnhancementModel
|
12 |
+
from utils.setup_optim_scheduler import get_optimizer_scheduler
|
13 |
+
from utils.evaluator import Evaluator
|
14 |
+
from utils.setup_criterion import get_criterion
|
15 |
+
from utils.trainer import Trainer
|
16 |
+
|
17 |
+
|
18 |
+
def main(config: omegaconf.DictConfig):
|
19 |
+
|
20 |
+
os.environ["CUDA_VISIBLE_DEVICES"] = str(config.train.cuda_visible_device)
|
21 |
+
save_path = prepare_logging()
|
22 |
+
|
23 |
+
logging.info(f"Starting training at {datetime.datetime.now().strftime('%Y-%m-%d %H:%M:%S')}")
|
24 |
+
logging.info(f"Saving logs to {save_path}")
|
25 |
+
logging.info(f"Config file: {OmegaConf.to_yaml(config)}")
|
26 |
+
|
27 |
+
train_dataset, valid_dataset, test_dataset = get_datasets(config.data)
|
28 |
+
|
29 |
+
msg = f"Training with {len(train_dataset)} image pairs"
|
30 |
+
if valid_dataset is not None:
|
31 |
+
msg += f", validating with {len(valid_dataset)} image pairs"
|
32 |
+
msg += f" and testing with {len(test_dataset)} image pairs."
|
33 |
+
logging.info(msg)
|
34 |
+
|
35 |
+
train_loader = DataLoader(train_dataset, batch_size=config.train.batch_size, shuffle=True)
|
36 |
+
if valid_dataset is not None:
|
37 |
+
valid_loader = DataLoader(valid_dataset, batch_size=1, shuffle=False)
|
38 |
+
else:
|
39 |
+
valid_loader = None
|
40 |
+
test_loader = DataLoader(test_dataset, batch_size=1, shuffle=False)
|
41 |
+
|
42 |
+
model = NamingEnhancementModel(config.model)
|
43 |
+
if config.model.ckpt_path is not None:
|
44 |
+
model.load_state_dict(torch.load(config.model.ckpt_path)["model_state_dict"])
|
45 |
+
model.cuda()
|
46 |
+
|
47 |
+
criterion = get_criterion(config.train.criterion)
|
48 |
+
|
49 |
+
optimizer, scheduler = get_optimizer_scheduler(model,
|
50 |
+
config.train.optimizer,
|
51 |
+
config.train.scheduler if "scheduler" in config.train else None)
|
52 |
+
|
53 |
+
if valid_loader is not None:
|
54 |
+
valid_evaluator = Evaluator(valid_loader, config.eval.metrics, 'valid', save_path, config.eval.metric_to_save)
|
55 |
+
else:
|
56 |
+
valid_evaluator = None
|
57 |
+
|
58 |
+
test_evaluator = Evaluator(test_loader, config.eval.metrics, 'test', save_path, config.eval.metric_to_save)
|
59 |
+
|
60 |
+
|
61 |
+
trainer = Trainer(model, optimizer, criterion, scheduler, train_loader, valid_evaluator, test_evaluator, config.train, config.eval)
|
62 |
+
trainer.train()
|
63 |
+
|
64 |
+
if __name__ == "__main__":
|
65 |
+
from omegaconf import OmegaConf
|
66 |
+
import argparse
|
67 |
+
|
68 |
+
parser = argparse.ArgumentParser()
|
69 |
+
parser.add_argument('--config', type=str, default='configs/mit5k_dpe_config.yaml')
|
70 |
+
args = parser.parse_args()
|
71 |
+
|
72 |
+
config = OmegaConf.load(args.config)
|
73 |
+
main(config)
|
utils/deltaE.py
ADDED
@@ -0,0 +1,125 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from skimage import color
|
2 |
+
import numpy as np
|
3 |
+
import torch
|
4 |
+
|
5 |
+
class deltaEab():
|
6 |
+
def __init__(self, color_chart_area=0):
|
7 |
+
super().__init__()
|
8 |
+
self.color_chart_area = color_chart_area
|
9 |
+
|
10 |
+
def __call__(self, img1, img2):
|
11 |
+
""" Compute the deltaE76 between two numpy RGB images
|
12 |
+
From M. Afifi: https://github.com/mahmoudnafifi/WB_sRGB/blob/master/WB_sRGB_Python/evaluation/calc_deltaE.py
|
13 |
+
:param img1: numpy RGB image or pytorch tensor
|
14 |
+
:param img2: numpy RGB image or pytocrh tensor
|
15 |
+
:return: deltaE76
|
16 |
+
"""
|
17 |
+
|
18 |
+
if type(img1) == torch.Tensor:
|
19 |
+
assert img1.shape[0] == 1
|
20 |
+
img1 = img1.squeeze().permute(1, 2, 0).cpu().numpy()
|
21 |
+
|
22 |
+
if type(img2) == torch.Tensor:
|
23 |
+
assert img2.shape[0] == 1
|
24 |
+
img2 = img2.squeeze().permute(1, 2, 0).cpu().numpy()
|
25 |
+
|
26 |
+
# Convert to Lab
|
27 |
+
img1 = color.rgb2lab(img1)
|
28 |
+
img2 = color.rgb2lab(img2)
|
29 |
+
|
30 |
+
# reshape to 1D array
|
31 |
+
img1 = img1.reshape(-1, 3).astype(np.float32)
|
32 |
+
img2 = img2.reshape(-1, 3).astype(np.float32)
|
33 |
+
|
34 |
+
# compute deltaE76
|
35 |
+
de76 = np.sqrt(np.sum(np.power(img1 - img2, 2), 1))
|
36 |
+
|
37 |
+
return sum(de76) / (np.shape(de76)[0] - self.color_chart_area)
|
38 |
+
|
39 |
+
|
40 |
+
class deltaE00():
|
41 |
+
def __init__(self, color_chart_area=0):
|
42 |
+
super().__init__()
|
43 |
+
self.color_chart_area = color_chart_area
|
44 |
+
self.kl = 1
|
45 |
+
self.kc = 1
|
46 |
+
self.kh = 1
|
47 |
+
|
48 |
+
def __call__(self, img1, img2):
|
49 |
+
""" Compute the deltaE00 between two numpy RGB images
|
50 |
+
From M. Afifi: https://github.com/mahmoudnafifi/WB_sRGB/blob/master/WB_sRGB_Python/evaluation/calc_deltaE2000.py
|
51 |
+
:param img1: numpy RGB image or pytocrh tensor
|
52 |
+
:param img2: numpy RGB image or pytocrh tensor
|
53 |
+
:return: deltaE00
|
54 |
+
"""
|
55 |
+
|
56 |
+
if type(img1) == torch.Tensor:
|
57 |
+
assert img1.shape[0] == 1
|
58 |
+
img1 = img1.squeeze().permute(1, 2, 0).cpu().numpy()
|
59 |
+
|
60 |
+
if type(img2) == torch.Tensor:
|
61 |
+
assert img2.shape[0] == 1
|
62 |
+
img2 = img2.squeeze().permute(1, 2, 0).cpu().numpy()
|
63 |
+
|
64 |
+
# Convert to Lab
|
65 |
+
img1 = color.rgb2lab(img1)
|
66 |
+
img2 = color.rgb2lab(img2)
|
67 |
+
|
68 |
+
# reshape to 1D array
|
69 |
+
img1 = img1.reshape(-1, 3).astype(np.float32)
|
70 |
+
img2 = img2.reshape(-1, 3).astype(np.float32)
|
71 |
+
|
72 |
+
# compute deltaE00
|
73 |
+
Lstd = np.transpose(img1[:, 0])
|
74 |
+
astd = np.transpose(img1[:, 1])
|
75 |
+
bstd = np.transpose(img1[:, 2])
|
76 |
+
Cabstd = np.sqrt(np.power(astd, 2) + np.power(bstd, 2))
|
77 |
+
Lsample = np.transpose(img2[:, 0])
|
78 |
+
asample = np.transpose(img2[:, 1])
|
79 |
+
bsample = np.transpose(img2[:, 2])
|
80 |
+
Cabsample = np.sqrt(np.power(asample, 2) + np.power(bsample, 2))
|
81 |
+
Cabarithmean = (Cabstd + Cabsample) / 2
|
82 |
+
G = 0.5 * (1 - np.sqrt((np.power(Cabarithmean, 7)) / (np.power(
|
83 |
+
Cabarithmean, 7) + np.power(25, 7))))
|
84 |
+
apstd = (1 + G) * astd
|
85 |
+
apsample = (1 + G) * asample
|
86 |
+
Cpsample = np.sqrt(np.power(apsample, 2) + np.power(bsample, 2))
|
87 |
+
Cpstd = np.sqrt(np.power(apstd, 2) + np.power(bstd, 2))
|
88 |
+
Cpprod = (Cpsample * Cpstd)
|
89 |
+
zcidx = np.argwhere(Cpprod == 0)
|
90 |
+
hpstd = np.arctan2(bstd, apstd)
|
91 |
+
hpstd[np.argwhere((np.abs(apstd) + np.abs(bstd)) == 0)] = 0
|
92 |
+
hpsample = np.arctan2(bsample, apsample)
|
93 |
+
hpsample = hpsample + 2 * np.pi * (hpsample < 0)
|
94 |
+
hpsample[np.argwhere((np.abs(apsample) + np.abs(bsample)) == 0)] = 0
|
95 |
+
dL = (Lsample - Lstd)
|
96 |
+
dC = (Cpsample - Cpstd)
|
97 |
+
dhp = (hpsample - hpstd)
|
98 |
+
dhp = dhp - 2 * np.pi * (dhp > np.pi)
|
99 |
+
dhp = dhp + 2 * np.pi * (dhp < (-np.pi))
|
100 |
+
dhp[zcidx] = 0
|
101 |
+
dH = 2 * np.sqrt(Cpprod) * np.sin(dhp / 2)
|
102 |
+
Lp = (Lsample + Lstd) / 2
|
103 |
+
Cp = (Cpstd + Cpsample) / 2
|
104 |
+
hp = (hpstd + hpsample) / 2
|
105 |
+
hp = hp - (np.abs(hpstd - hpsample) > np.pi) * np.pi
|
106 |
+
hp = hp + (hp < 0) * 2 * np.pi
|
107 |
+
hp[zcidx] = hpsample[zcidx] + hpstd[zcidx]
|
108 |
+
Lpm502 = np.power((Lp - 50), 2)
|
109 |
+
Sl = 1 + 0.015 * Lpm502 / np.sqrt(20 + Lpm502)
|
110 |
+
Sc = 1 + 0.045 * Cp
|
111 |
+
T = 1 - 0.17 * np.cos(hp - np.pi / 6) + 0.24 * np.cos(2 * hp) + \
|
112 |
+
0.32 * np.cos(3 * hp + np.pi / 30) \
|
113 |
+
- 0.20 * np.cos(4 * hp - 63 * np.pi / 180)
|
114 |
+
Sh = 1 + 0.015 * Cp * T
|
115 |
+
delthetarad = (30 * np.pi / 180) * np.exp(
|
116 |
+
- np.power((180 / np.pi * hp - 275) / 25, 2))
|
117 |
+
Rc = 2 * np.sqrt((np.power(Cp, 7)) / (np.power(Cp, 7) + np.power(25, 7)))
|
118 |
+
RT = - np.sin(2 * delthetarad) * Rc
|
119 |
+
klSl = self.kl * Sl
|
120 |
+
kcSc = self.kc * Sc
|
121 |
+
khSh = self.kh * Sh
|
122 |
+
de00 = np.sqrt(np.power((dL / klSl), 2) + np.power((dC / kcSc), 2) +
|
123 |
+
np.power((dH / khSh), 2) + RT * (dC / kcSc) * (dH / khSh))
|
124 |
+
|
125 |
+
return np.sum(de00) / (np.shape(de00)[0] - self.color_chart_area)
|
utils/evaluator.py
ADDED
@@ -0,0 +1,69 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import logging
|
3 |
+
from torchmetrics import PeakSignalNoiseRatio as PSNR
|
4 |
+
from torchmetrics import StructuralSimilarityIndexMeasure as SSIM
|
5 |
+
from lpips import LPIPS
|
6 |
+
from utils.deltaE import deltaEab, deltaE00
|
7 |
+
|
8 |
+
class Evaluator():
|
9 |
+
def __init__(self, dataloader, metrics, split_name, log_dirpath, best_metric):
|
10 |
+
self.dataloader = dataloader
|
11 |
+
self._create_metrics(metrics)
|
12 |
+
self.split_name = split_name
|
13 |
+
self.log_dirpath = log_dirpath
|
14 |
+
self.best_metric = best_metric
|
15 |
+
self.best_value = 0
|
16 |
+
|
17 |
+
def _create_metrics(self, metrics):
|
18 |
+
self.metrics = {}
|
19 |
+
self.cumulative_values = {}
|
20 |
+
for metric in metrics:
|
21 |
+
if metric.type == 'PSNR':
|
22 |
+
self.metrics['PSNR'] = PSNR(**metric.params).cuda()
|
23 |
+
self.cumulative_values['PSNR'] = 0
|
24 |
+
elif metric.type == 'SSIM':
|
25 |
+
self.metrics['SSIM'] = SSIM(**metric.params).cuda()
|
26 |
+
self.cumulative_values['SSIM'] = 0
|
27 |
+
elif metric.type == 'LPIPS':
|
28 |
+
self.metrics['LPIPS'] = LPIPS(**metric.params).cuda()
|
29 |
+
self.cumulative_values['LPIPS'] = 0
|
30 |
+
elif metric.type == 'deltaEab':
|
31 |
+
self.metrics['deltaEab'] = deltaEab()
|
32 |
+
self.cumulative_values['deltaEab'] = 0
|
33 |
+
elif metric.type == 'deltaE00':
|
34 |
+
self.metrics['deltaE00'] = deltaE00()
|
35 |
+
self.cumulative_values['deltaE00'] = 0
|
36 |
+
else:
|
37 |
+
raise NotImplementedError(f"Metric {metric.type} not implemented")
|
38 |
+
|
39 |
+
def _compute_metrics(self, input_image, target_image):
|
40 |
+
for name, metric in self.metrics.items():
|
41 |
+
self.cumulative_values[name] += metric(input_image, target_image)
|
42 |
+
|
43 |
+
def _compute_average_metrics(self):
|
44 |
+
avg_metrics = {}
|
45 |
+
for name, value in self.cumulative_values.items():
|
46 |
+
avg_metrics[name] = float(value / len(self.dataloader))
|
47 |
+
return avg_metrics
|
48 |
+
|
49 |
+
def _reset_metrics(self):
|
50 |
+
for metric in self.metrics:
|
51 |
+
self.cumulative_values[metric] = 0
|
52 |
+
|
53 |
+
def __call__(self, model, save_results=True):
|
54 |
+
model.eval()
|
55 |
+
self._reset_metrics()
|
56 |
+
with torch.no_grad():
|
57 |
+
for data in self.dataloader:
|
58 |
+
input_image, target_image, name = data['input_image'], data['target_image'], data['name']
|
59 |
+
|
60 |
+
self._compute_metrics(input_image.cuda(), target_image.cuda())
|
61 |
+
|
62 |
+
avg_metrics = self._compute_average_metrics()
|
63 |
+
logging.info(f"{self.split_name} metrics: " + ", ".join([f'{key}: {value:.4f}' for key, value in avg_metrics.items()]))
|
64 |
+
|
65 |
+
if (avg_metrics[self.best_metric] > self.best_value) and save_results:
|
66 |
+
self.best_value = avg_metrics[self.best_metric]
|
67 |
+
torch.save({**{'model_state_dict': model.state_dict()}, **avg_metrics},
|
68 |
+
f"{self.log_dirpath}/{self.split_name}_best_model.pth")
|
69 |
+
logging.info(f"New best model saved at {self.log_dirpath}/{self.split_name}_best_model.pth")
|
utils/logger.py
ADDED
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import logging
|
2 |
+
import os
|
3 |
+
import datetime
|
4 |
+
|
5 |
+
def prepare_logging():
|
6 |
+
save_path = os.path.join(os.path.dirname(os.path.dirname(os.path.abspath(__file__))), "logs")
|
7 |
+
if not os.path.exists(save_path):
|
8 |
+
os.makedirs(save_path)
|
9 |
+
|
10 |
+
timestamp = datetime.datetime.now().strftime('%Y%m%d_%H%M%S')
|
11 |
+
log_dirpath = "log_" + timestamp
|
12 |
+
save_path = os.path.join(save_path, log_dirpath)
|
13 |
+
os.mkdir(save_path)
|
14 |
+
|
15 |
+
handlers = [logging.FileHandler(os.path.join(save_path, "log.txt")), logging.StreamHandler()]
|
16 |
+
logging.basicConfig(level=logging.INFO,
|
17 |
+
format='%(asctime)s %(levelname)s %(message)s',
|
18 |
+
handlers=handlers,
|
19 |
+
datefmt='%Y-%m-%d %H:%M:%S')
|
20 |
+
|
21 |
+
return save_path
|
utils/setup_criterion.py
ADDED
@@ -0,0 +1,26 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from torch import nn
|
2 |
+
from torchmetrics import StructuralSimilarityIndexMeasure as SSIM
|
3 |
+
|
4 |
+
class BackboneL2SSIMLoss(nn.Module):
|
5 |
+
def __init__(self, ssim_window_size=5, alpha=0.5):
|
6 |
+
super(BackboneL2SSIMLoss, self).__init__()
|
7 |
+
self.ssim_window_size = ssim_window_size
|
8 |
+
self.alpha = alpha
|
9 |
+
|
10 |
+
self.ssim_loss = SSIM(kernel_size=ssim_window_size).cuda()
|
11 |
+
self.l2_loss = nn.MSELoss()
|
12 |
+
|
13 |
+
def forward(self, backbone, prediction, target):
|
14 |
+
ssim_loss_pred = (1.0 - self.ssim_loss(prediction, target))
|
15 |
+
l2_loss_pred = self.l2_loss(prediction, target)
|
16 |
+
l2_loss_backbone = self.l2_loss(backbone, target)
|
17 |
+
|
18 |
+
return self.alpha*l2_loss_backbone + l2_loss_pred + ssim_loss_pred
|
19 |
+
|
20 |
+
def get_criterion(criterion_config):
|
21 |
+
criterion_type = criterion_config.type
|
22 |
+
if criterion_type == 'backbone-L2-SSIM':
|
23 |
+
return BackboneL2SSIMLoss(**criterion_config['params'])
|
24 |
+
#TODO: Add more criterion types here (L1, L2 ...)
|
25 |
+
else:
|
26 |
+
raise ValueError(f"Unsupported criterion type: {criterion_type}")
|
utils/setup_optim_scheduler.py
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from torch.optim import lr_scheduler
|
3 |
+
|
4 |
+
def get_optimizer_scheduler(model, optim_config, scheduler_config):
|
5 |
+
optimizer = getattr(torch.optim, optim_config.type)(model.parameters(), **optim_config.params)
|
6 |
+
if scheduler_config is not None:
|
7 |
+
scheduler = getattr(torch.optim.lr_scheduler, scheduler_config.type)(optimizer, **scheduler_config.params)
|
8 |
+
else:
|
9 |
+
scheduler = None
|
10 |
+
return optimizer, scheduler
|
utils/trainer.py
ADDED
@@ -0,0 +1,47 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import logging
|
2 |
+
|
3 |
+
class Trainer():
|
4 |
+
def __init__(self, model, optimizer, criterion, scheduler, train_loader, valid_evaluator, test_evaluator, config_train, config_eval):
|
5 |
+
self.model = model
|
6 |
+
self.optimizer = optimizer
|
7 |
+
self.criterion = criterion
|
8 |
+
self.scheduler = scheduler
|
9 |
+
self.train_loader = train_loader
|
10 |
+
self.valid_evaluator = valid_evaluator
|
11 |
+
self.test_evaluator = test_evaluator
|
12 |
+
self.config_train = config_train
|
13 |
+
self.config_eval = config_eval
|
14 |
+
|
15 |
+
def _train_step(self, input_image, target_image):
|
16 |
+
self.optimizer.zero_grad()
|
17 |
+
|
18 |
+
prediction, x_backbone = self.model(input_image.cuda(), return_backbone=True)
|
19 |
+
loss = self.criterion(x_backbone, prediction, target_image.cuda())
|
20 |
+
|
21 |
+
loss.backward()
|
22 |
+
self.optimizer.step()
|
23 |
+
if self.scheduler is not None:
|
24 |
+
self.scheduler.step()
|
25 |
+
|
26 |
+
return loss.item()
|
27 |
+
|
28 |
+
def _train_epoch(self):
|
29 |
+
epoch_loss = 0
|
30 |
+
self.model.train()
|
31 |
+
for data in self.train_loader:
|
32 |
+
input_image, target_image, name = data['input_image'], data['target_image'], data['name']
|
33 |
+
loss = self._train_step(input_image, target_image)
|
34 |
+
epoch_loss += loss
|
35 |
+
|
36 |
+
return epoch_loss / len(self.train_loader)
|
37 |
+
|
38 |
+
def train(self):
|
39 |
+
for epoch in range(self.config_train.epochs):
|
40 |
+
epoch_loss = self._train_epoch()
|
41 |
+
logging.info(f"Epoch {epoch+1}/{self.config_train.epochs} | Loss: {epoch_loss}")
|
42 |
+
|
43 |
+
if self.valid_evaluator is not None and (epoch+1) % self.config_train.valid_every == 0:
|
44 |
+
self.valid_evaluator(self.model)
|
45 |
+
|
46 |
+
self.test_evaluator(self.model, save_results=True if self.valid_evaluator is None else False)
|
47 |
+
logging.info("Training finished.")
|