model: ckpt_path: ~ backbone: params: input_channels: 3 output_channels: 3 encoder_dims: [4, 8, 16] decoder_dims: [8, 4] color_naming: num_categories: 6 bezier_control_points_estimator: params: num_categories: ${model.color_naming.num_categories} num_control_points: 10 local_fusion: params: att_in_dim: 3 num_categories: ${model.color_naming.num_categories} max_pool_ksize1: 4 max_pool_ksize2: 2 encoder_dims: [8, 16] data: train: target: mit5k params: input_path: /home/dserrano/Documents/datasets/FiveK-UEGAN/input target_path: /home/dserrano/Documents/datasets/FiveK-UEGAN/expertC_gt img_ids_filepath: mit5k_ids_filepath/dpe/images_train.txt transform: - type: RandomCrop params: size: [ 256, 256 ] - type: Resize params: size: 256 - type: RandomHorizontalFlip params: p: 0.5 - type: RandomVerticalFlip params: p: 0.5 valid: target: mit5k params: input_path: /home/dserrano/Documents/datasets/FiveK-UEGAN/input target_path: /home/dserrano/Documents/datasets/FiveK-UEGAN/expertC_gt img_ids_filepath: mit5k_ids_filepath/dpe/images_test.txt test: target: mit5k params: input_path: /home/dserrano/Documents/datasets/FiveK-UEGAN/input target_path: /home/dserrano/Documents/datasets/FiveK-UEGAN/expertC_gt img_ids_filepath: mit5k_ids_filepath/dpe/images_test.txt train: cuda_visible_device: 0 batch_size: 8 epochs: 100 valid_every: 1 optimizer: type: Adam params: lr: 1e-4 betas: [ 0.9, 0.999 ] eps: 1e-8 criterion: type: backbone-L2-SSIM params: alpha: 0.5 ssim_window_size: 5 eval: metrics: - type: PSNR params: data_range: 1.0 - type: SSIM params: kernel_size: 11 - type: LPIPS params: net: vgg version: 0.1 - type: deltaE00 - type: deltaEab metric_to_save: PSNR