import os import gradio as gr import torch import numpy as np from transformers import pipeline name_list = ['microsoft/biogpt', 'google/flan-ul2', 'facebook/galactica-1.3b'] examples = [['COVID-19 is'],['A 65-year-old female patient with a past medical history of']] print(f"Is CUDA available: {torch.cuda.is_available()}") print(f"CUDA device: {torch.cuda.get_device_name(torch.cuda.current_device())}") pipe_biogpt = pipeline("text-generation", model="microsoft/BioGPT-Large", device="cuda:0", model_kwargs={"torch_dtype":torch.bfloat16}) pipe_flan_t5_xxl = pipeline("text-generation", model="google/flan-t5-xxl", device="cuda:0", model_kwargs={"torch_dtype":torch.bfloat16}) pipe_gpt_2 = pipeline("text-generation", model="gpt2", device="cuda:0", model_kwargs={"torch_dtype":torch.bfloat16}) title = "LLM vs LLM!" description = "**Disclaimer:** this demo was made for research purposes only." def inference(text): output_biogpt = pipe_biogpt(text, max_length=100)[0]["generated_text"] output_flan_t5_xxl = pipe_flan_t5_xxl(text, max_length=100)[0]["generated_text"] output_gpt_2 = pipe_gpt_2(text, max_length=100)[0]["generated_text"] return [ output_biogpt, output_flan_t5_xxl, output_gpt_2 ] io = gr.Interface( inference, gr.Textbox(lines=3), outputs=[ gr.Textbox(lines=3, label="BioGPT-Large"), gr.Textbox(lines=3, label="Flan T5 XXL"), gr.Textbox(lines=3, label="GPT-2"), ], title=title, description=description, examples=examples ) io.launch()