File size: 10,267 Bytes
905f171
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
99cfc83
905f171
 
 
 
 
 
 
 
 
 
 
 
 
 
99cfc83
905f171
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
import gradio as gr
import numpy as np
from audioldm import text_to_audio, build_model
from share_btn import community_icon_html, loading_icon_html, share_js

model_id="haoheliu/AudioLDM-S-Full"

audioldm = build_model()
# audioldm=None

# def predict(input, history=[]):
#     # tokenize the new input sentence
#     new_user_input_ids = tokenizer.encode(input + tokenizer.eos_token, return_tensors='pt')

#     # append the new user input tokens to the chat history
#     bot_input_ids = torch.cat([torch.LongTensor(history), new_user_input_ids], dim=-1)

#     # generate a response 
#     history = model.generate(bot_input_ids, max_length=1000, pad_token_id=tokenizer.eos_token_id).tolist()

#     # convert the tokens to text, and then split the responses into lines
#     response = tokenizer.decode(history[0]).split("<|endoftext|>")
#     response = [(response[i], response[i+1]) for i in range(0, len(response)-1, 2)]  # convert to tuples of list
#     return response, history
  
def text2audio(text, duration, guidance_scale, random_seed, n_candidates):
    # print(text, length, guidance_scale)
    waveform = text_to_audio(audioldm, text, random_seed, duration=duration, guidance_scale=guidance_scale, n_candidate_gen_per_text=int(n_candidates)) # [bs, 1, samples]
    waveform = [gr.make_waveform((16000, wave[0])) for wave in waveform]
    # waveform = [(16000, np.random.randn(16000)), (16000, np.random.randn(16000))]
    if(len(waveform) == 1):
      waveform = waveform[0]
    return waveform,gr.update(visible=True), gr.update(visible=True), gr.update(visible=True)

# iface = gr.Interface(fn=text2audio, inputs=[
#         gr.Textbox(value="A man is speaking in a huge room", max_lines=1),
#         gr.Slider(2.5, 10, value=5, step=2.5),
#         gr.Slider(0, 5, value=2.5, step=0.5),
#         gr.Number(value=42)
#     ], outputs=[gr.Audio(label="Output", type="numpy"), gr.Audio(label="Output", type="numpy")],
#                 allow_flagging="never"
#                      )
# iface.launch(share=True)

css = """
        .gradio-container {
            font-family: 'IBM Plex Sans', sans-serif;
        }
        .gr-button {
            color: white;
            border-color: black;
            background: black;
        }
        input[type='range'] {
            accent-color: black;
        }
        .dark input[type='range'] {
            accent-color: #dfdfdf;
        }
        .container {
            max-width: 730px;
            margin: auto;
            padding-top: 1.5rem;
        }
        #gallery {
            min-height: 22rem;
            margin-bottom: 15px;
            margin-left: auto;
            margin-right: auto;
            border-bottom-right-radius: .5rem !important;
            border-bottom-left-radius: .5rem !important;
        }
        #gallery>div>.h-full {
            min-height: 20rem;
        }
        .details:hover {
            text-decoration: underline;
        }
        .gr-button {
            white-space: nowrap;
        }
        .gr-button:focus {
            border-color: rgb(147 197 253 / var(--tw-border-opacity));
            outline: none;
            box-shadow: var(--tw-ring-offset-shadow), var(--tw-ring-shadow), var(--tw-shadow, 0 0 #0000);
            --tw-border-opacity: 1;
            --tw-ring-offset-shadow: var(--tw-ring-inset) 0 0 0 var(--tw-ring-offset-width) var(--tw-ring-offset-color);
            --tw-ring-shadow: var(--tw-ring-inset) 0 0 0 calc(3px var(--tw-ring-offset-width)) var(--tw-ring-color);
            --tw-ring-color: rgb(191 219 254 / var(--tw-ring-opacity));
            --tw-ring-opacity: .5;
        }
        #advanced-btn {
            font-size: .7rem !important;
            line-height: 19px;
            margin-top: 12px;
            margin-bottom: 12px;
            padding: 2px 8px;
            border-radius: 14px !important;
        }
        #advanced-options {
            display: none;
            margin-bottom: 20px;
        }
        .footer {
            margin-bottom: 45px;
            margin-top: 35px;
            text-align: center;
            border-bottom: 1px solid #e5e5e5;
        }
        .footer>p {
            font-size: .8rem;
            display: inline-block;
            padding: 0 10px;
            transform: translateY(10px);
            background: white;
        }
        .dark .footer {
            border-color: #303030;
        }
        .dark .footer>p {
            background: #0b0f19;
        }
        .acknowledgments h4{
            margin: 1.25em 0 .25em 0;
            font-weight: bold;
            font-size: 115%;
        }
        .animate-spin {
            animation: spin 1s linear infinite;
        }
        @keyframes spin {
            from {
                transform: rotate(0deg);
            }
            to {
                transform: rotate(360deg);
            }
        }
        #share-btn-container {
            display: flex; padding-left: 0.5rem !important; padding-right: 0.5rem !important; background-color: #000000; justify-content: center; align-items: center; border-radius: 9999px !important; width: 13rem;
            margin-top: 10px;
            margin-left: auto;
        }
        #share-btn {
            all: initial; color: #ffffff;font-weight: 600; cursor:pointer; font-family: 'IBM Plex Sans', sans-serif; margin-left: 0.5rem !important; padding-top: 0.25rem !important; padding-bottom: 0.25rem !important;right:0;
        }
        #share-btn * {
            all: unset;
        }
        #share-btn-container div:nth-child(-n+2){
            width: auto !important;
            min-height: 0px !important;
        }
        #share-btn-container .wrap {
            display: none !important;
        }
        
        .gr-form{
            flex: 1 1 50%; border-top-right-radius: 0; border-bottom-right-radius: 0;
        }
        #prompt-container{
            gap: 0;
        }
        #prompt-text-input, #negative-prompt-text-input{padding: .45rem 0.625rem}
        #component-16{border-top-width: 1px!important;margin-top: 1em}
        .image_duplication{position: absolute; width: 100px; left: 50px}
"""
iface = gr.Blocks(css=css)

with iface:
    gr.HTML(
        """
            <div style="text-align: center; max-width: 700px; margin: 0 auto;">
              <div
                style="
                  display: inline-flex;
                  align-items: center;
                  gap: 0.8rem;
                  font-size: 1.75rem;
                "
              >
                <h1 style="font-weight: 900; margin-bottom: 10px;">
                  AudioLDM: Text-to-Audio Generation with Latent Diffusion Models
                </h1>
              </div>
              <p style="margin-bottom: 10px; font-size: 94%">
                <a href="https://arxiv.org/abs/2301.12503">[Paper]</a>  <a href="https://audioldm.github.io/">[Project page]</a>
              </p>
            </div>
        """
    )  
    with gr.Group():
        with gr.Box():
            ############# Input
            textbox = gr.Textbox(value="A hammer is hitting a wooden surface", max_lines=1, label="Input your text here. Please ensure it is descriptive and of moderate length.")

            with gr.Accordion("Advanced Options", open=False):
              seed = gr.Number(value=42, label="Change this value (any integer number) will lead to a different generation result.")
              duration = gr.Slider(2.5, 10, value=5, step=2.5, label="Duration (seconds)")
              guidance_scale = gr.Slider(0, 5, value=2.5, step=0.5, label="Guidance scale (Large => better quality and relavancy to text; Small => better diversity)")
              n_candidates = gr.Slider(1, 5, value=3, step=1, label="Automatic quality control. This number control the number of candidates (e.g., generate three audios and choose the best to show you). A Larger value usually lead to better quality with heavier computation")
            ############# Output
            # outputs=gr.Audio(label="Output", type="numpy")
            outputs=gr.Video(label="Output")
            with gr.Group(elem_id="container-advanced-btns"):
              # advanced_button = gr.Button("Advanced options", elem_id="advanced-btn")
              with gr.Group(elem_id="share-btn-container"):
                community_icon = gr.HTML(community_icon_html, visible=False)
                loading_icon = gr.HTML(loading_icon_html, visible=False)
                share_button = gr.Button("Share to community", elem_id="share-btn", visible=False)
            # outputs=[gr.Audio(label="Output", type="numpy"), gr.Audio(label="Output", type="numpy")]
            
            btn = gr.Button("Submit").style(full_width=True)
        btn.click(text2audio, inputs=[textbox, duration, guidance_scale, seed, n_candidates], outputs=[outputs, community_icon, loading_icon, share_button])  # , share_button, community_icon, loading_icon
        share_button.click(None, [], [], _js=share_js)
        gr.HTML('''
        <hr>
        <div class="footer" style="text-align: center; max-width: 700px; margin: 0 auto;">
                    <p>Model by <a href="https://twitter.com/LiuHaohe" style="text-decoration: underline;" target="_blank">Haohe Liu</a>
                    </p>
        </div>
        ''')
        
        with gr.Accordion("Additional information", open=False):
            gr.HTML(
            """
                <div class="acknowledgments">
                    <p> We build the model with data from <a href="http://research.google.com/audioset/">AudioSet</a>, <a href="https://freesound.org/">Freesound</a> and <a href="https://sound-effects.bbcrewind.co.uk/">BBC Sound Effect library</a>. We share this demo based on the <a href="https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/375954/Research.pdf">UK copyright exception</a> of data for academic research. </p>
                    <p>This demo is strictly for research demo purpose only. For commercial use please <a href="haoheliu@gmail.com">contact us</a>.</p>
                            </div>
                        """
                      )
            
iface.queue(concurrency_count = 2)
iface.launch(debug=True)
# iface.launch(debug=True, share=True)