from transformers import pipeline import gradio as gr from fastapi import FastAPI from gradio_client import Client from typing import Union import uvicorn app = FastAPI() chatbot = pipeline(model="Kaludi/Customer-Support-Assistant-V2") def print_like_dislike(x: gr.LikeData): print(x.index, x.value, x.liked) def add_message(history, message): for x in message["files"]: history.append(((x,), None)) if message["text"] is not None: history.append((message["text"], None)) return history, gr.MultimodalTextbox(value=None, interactive=False) def DS_chatbot(message,history): conversation = chatbot(message) return conversation[0]['generated_text'] '''io = gr.ChatInterface(DS_chatbot, title=" Customer Service Bot", description="Enter your query.")''' with gr.Blocks() as demo: chat_bot = gr.Chatbot( [], elem_id="Customer Service Bot", bubble_full_width=False, ) chat_input = gr.MultimodalTextbox(interactive=True, file_types=["image"], placeholder="Enter message or upload file...", show_label=False) chat_msg = chat_input.submit(add_message, [chat_bot, chat_input], [chat_bot, chat_input]) bot_msg = chat_msg.then(DS_chatbot, chat_bot, chat_bot, api_name="bot_response") bot_msg.then(lambda: gr.MultimodalTextbox(interactive=True), None, [chat_input]) chat_bot.like(print_like_dislike, None, None) @app.get("/") async def read_main(): return {"message": "Append /gradio to the url to see gradio the interface" ,"message2": "Append /hello/{any_name} to get a greeting"} @app.get("/hello/{name}") async def read_name(name: Union[str, None] = None): return { "Hey!": name} # Mount the Gradio app onto the FastAPI app app = gr.mount_gradio_app(app, demo, path='/gradio') if __name__ == "__main__": uvicorn.run(app, host="0.0.0.0", port=7860)