Spaces:
Sleeping
Sleeping
initial commit
Browse files- Dockerfile +24 -0
- app.py +300 -0
- data/gz_2010_us_040_00_500k.json +0 -0
- data/iso_ne_geojson.json +0 -0
- data/megawatt_demand_2024.csv +0 -0
- data/new_england_geojson.json +0 -0
- data/references.md +1 -0
- geo_json_extract.py +33 -0
- notebooks/newengland_power_demand.ipynb +36 -0
- requirements.txt +11 -0
Dockerfile
ADDED
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Use a lightweight Python base image
|
2 |
+
FROM python:3.10-slim
|
3 |
+
|
4 |
+
# Set the working directory inside the container
|
5 |
+
WORKDIR /app
|
6 |
+
|
7 |
+
# Install system-level dependencies (optional, if needed)
|
8 |
+
# RUN apt-get update && apt-get install -y <dependencies>
|
9 |
+
|
10 |
+
# Copy the requirements file into the container
|
11 |
+
COPY requirements.txt .
|
12 |
+
|
13 |
+
# Install Python dependencies
|
14 |
+
RUN pip install --no-cache-dir -r requirements.txt
|
15 |
+
|
16 |
+
# Copy the rest of the application files into the container
|
17 |
+
COPY . .
|
18 |
+
|
19 |
+
# Expose the port the app runs on
|
20 |
+
EXPOSE 8050
|
21 |
+
|
22 |
+
# Command to run your Dash app using gunicorn
|
23 |
+
CMD ["gunicorn", "--bind", "0.0.0.0:8050", "app:server"]
|
24 |
+
|
app.py
ADDED
@@ -0,0 +1,300 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import json
|
2 |
+
import dash
|
3 |
+
from dash import dcc, html, Input, Output
|
4 |
+
import plotly.express as px
|
5 |
+
import plotly.graph_objects as go
|
6 |
+
import pandas as pd
|
7 |
+
|
8 |
+
# -----------------------------------------
|
9 |
+
# Load and Prepare Data
|
10 |
+
# -----------------------------------------
|
11 |
+
df = pd.read_csv("./data/megawatt_demand_2024.csv") # Replace with your actual filename
|
12 |
+
df['timestamp'] = pd.to_datetime(df['UTC Timestamp (Interval Ending)'])
|
13 |
+
|
14 |
+
load_columns = [
|
15 |
+
"Connecticut Actual Load (MW)",
|
16 |
+
"Maine Actual Load (MW)",
|
17 |
+
"New Hampshire Actual Load (MW)",
|
18 |
+
"Northeast Massachusetts Actual Load (MW)",
|
19 |
+
"Rhode Island Actual Load (MW)",
|
20 |
+
"Southeast Massachusetts Actual Load (MW)",
|
21 |
+
"Vermont Actual Load (MW)",
|
22 |
+
"Western/Central Massachusetts Actual Load (MW)"
|
23 |
+
]
|
24 |
+
|
25 |
+
df_melted = df.melt(
|
26 |
+
id_vars=['timestamp'],
|
27 |
+
value_vars=load_columns,
|
28 |
+
var_name='region',
|
29 |
+
value_name='load_mw'
|
30 |
+
)
|
31 |
+
|
32 |
+
# Clean region names
|
33 |
+
df_melted['region'] = df_melted['region'].str.replace(' Actual Load \(MW\)', '', regex=True)
|
34 |
+
|
35 |
+
# Compute daily aggregates
|
36 |
+
df_melted['date'] = df_melted['timestamp'].dt.date
|
37 |
+
daily_agg = df_melted.groupby(['region', 'date']).agg(
|
38 |
+
daily_avg=('load_mw', 'mean'),
|
39 |
+
daily_min=('load_mw', 'min'),
|
40 |
+
daily_max=('load_mw', 'max')
|
41 |
+
).reset_index()
|
42 |
+
|
43 |
+
print(df_melted.head())
|
44 |
+
print(daily_agg.head())
|
45 |
+
# Load GeoJSON
|
46 |
+
with open('./data/new_england_geojson.json') as f:
|
47 |
+
geojson = json.load(f)
|
48 |
+
|
49 |
+
# Define a color map for the regions
|
50 |
+
region_colors = {
|
51 |
+
"Connecticut": "#1f77b4",
|
52 |
+
"Maine": "#ff7f0e",
|
53 |
+
"New Hampshire": "#2ca02c",
|
54 |
+
"Northeast Massachusetts": "#d62728",
|
55 |
+
"Rhode Island": "#9467bd",
|
56 |
+
"Southeast Massachusetts": "#8c564b",
|
57 |
+
"Vermont": "#e377c2",
|
58 |
+
"Western/Central Massachusetts": "#7f7f7f"
|
59 |
+
}
|
60 |
+
|
61 |
+
# Get unique dates for slider (daily granularity)
|
62 |
+
unique_dates = sorted(daily_agg['date'].unique())
|
63 |
+
|
64 |
+
# Identify month start dates
|
65 |
+
month_starts = [(i, d) for i, d in enumerate(unique_dates) if d.day == 1]
|
66 |
+
|
67 |
+
# Create marks only for the first of each month
|
68 |
+
date_marks = {i: d.strftime("%Y-%m-%d") for i, d in month_starts}
|
69 |
+
|
70 |
+
# Initial state: use the full range of dates
|
71 |
+
start_idx = 0
|
72 |
+
end_idx = len(unique_dates) - 1
|
73 |
+
start_date = unique_dates[start_idx]
|
74 |
+
end_date = unique_dates[end_idx]
|
75 |
+
|
76 |
+
# Create initial figures
|
77 |
+
latest_time = df_melted['timestamp'].max()
|
78 |
+
df_latest = df_melted[df_melted['timestamp'] == latest_time]
|
79 |
+
df_avg = df_melted.groupby('region').mean().reset_index()
|
80 |
+
print(df_avg.head())
|
81 |
+
|
82 |
+
# Create a weekly-peak load by region chart for before clickthrough
|
83 |
+
df_melted['week'] = df_melted['timestamp'].dt.to_period('W').apply(lambda r: r.start_time)
|
84 |
+
|
85 |
+
fig_map = px.choropleth_mapbox(
|
86 |
+
df_avg,
|
87 |
+
geojson=geojson,
|
88 |
+
locations='region',
|
89 |
+
featureidkey='properties.NAME',
|
90 |
+
color='load_mw',
|
91 |
+
color_continuous_scale="Viridis",
|
92 |
+
mapbox_style="carto-positron",
|
93 |
+
zoom=5,
|
94 |
+
center={"lat": 43.5, "lon": -71.5}, # Approx center of New England
|
95 |
+
opacity=0.7,
|
96 |
+
hover_name='region'
|
97 |
+
)
|
98 |
+
fig_map.update_layout(margin={"r":0,"t":0,"l":0,"b":0}, template='plotly_dark')
|
99 |
+
|
100 |
+
# Initial line plot: all regions
|
101 |
+
fig_line_all = px.line(
|
102 |
+
df_melted,
|
103 |
+
x='timestamp',
|
104 |
+
y='load_mw',
|
105 |
+
color='region',
|
106 |
+
title='Load Over Time',
|
107 |
+
labels={'load_mw':'Load (MW)', 'timestamp':'Time'},
|
108 |
+
template='plotly_dark',
|
109 |
+
color_discrete_map=region_colors
|
110 |
+
)
|
111 |
+
fig_line_all.update_layout(hovermode="x unified")
|
112 |
+
|
113 |
+
# Initial daily aggregates plot (blank or show all)
|
114 |
+
# Initialize daily load figure
|
115 |
+
fig_daily = go.Figure(layout={"template":"plotly_dark"})
|
116 |
+
fig_daily.update_layout(title="Daily Aggregate Load", xaxis_title=None, yaxis_title="Load (MW)")
|
117 |
+
|
118 |
+
# -----------------------------------------
|
119 |
+
# Dash App
|
120 |
+
# -----------------------------------------
|
121 |
+
app = dash.Dash(__name__)
|
122 |
+
|
123 |
+
# Expose the Flask server instance
|
124 |
+
server = app.server
|
125 |
+
|
126 |
+
app.layout = html.Div(
|
127 |
+
style={"backgroundColor": "#333", "color": "#fff", "padding": "20px"}, # Dark background
|
128 |
+
children=[
|
129 |
+
html.H1("ISO-New England Grid Loading, 2024", style={"textAlign": "center"}),
|
130 |
+
html.Div([
|
131 |
+
html.Div([
|
132 |
+
html.H4('Average Load by ISO-NE Region'),
|
133 |
+
html.P("Click to filter by region"),
|
134 |
+
dcc.Graph(id='map', figure=fig_map, style={"height": "60vh"}),
|
135 |
+
|
136 |
+
#Markdown descriptor
|
137 |
+
dcc.Markdown(
|
138 |
+
"""
|
139 |
+
**ISO-New England Load by Region:**
|
140 |
+
This dashboard provides an interactive visualization of electricity
|
141 |
+
usage across New England states and Massachusetts sub-regions.
|
142 |
+
Use the date range slider and map to filter and explore trends in grid demand over time.
|
143 |
+
|
144 |
+
[Data from ISO-NE](https://www.eia.gov/electricity/wholesalemarkets/isone.php)
|
145 |
+
""",
|
146 |
+
style={"margin-top": "20px", "height": "30vh", "overflowY": "auto"}
|
147 |
+
)
|
148 |
+
], style={"width": "40%", "display": "inline-block", "vertical-align": "top"}),
|
149 |
+
|
150 |
+
html.Div([
|
151 |
+
dcc.Graph(id='timeseries', figure=fig_line_all, style={"height": "60vh"}),
|
152 |
+
dcc.Graph(id='daily_timeseries', figure=fig_daily, style={"height": "60vh", "marginTop":"20px"})
|
153 |
+
], style={"width": "58%", "display": "inline-block", "padding-left":"2%", "vertical-align": "top"})
|
154 |
+
]),
|
155 |
+
|
156 |
+
html.Div([
|
157 |
+
dcc.RangeSlider(
|
158 |
+
id='date-range-slider',
|
159 |
+
min=0,
|
160 |
+
max=len(unique_dates)-1,
|
161 |
+
value=[275, 306], #Month of Oct.
|
162 |
+
marks=date_marks,
|
163 |
+
step=1,
|
164 |
+
tooltip=None
|
165 |
+
),
|
166 |
+
], style={"margin-bottom":"20px"})
|
167 |
+
]
|
168 |
+
)
|
169 |
+
|
170 |
+
@app.callback(
|
171 |
+
[Output('map', 'figure'),
|
172 |
+
Output('timeseries', 'figure'),
|
173 |
+
Output('daily_timeseries', 'figure')],
|
174 |
+
[Input('map', 'clickData'),
|
175 |
+
Input('date-range-slider', 'value')]
|
176 |
+
)
|
177 |
+
def update_charts(clickData, slider_value):
|
178 |
+
start_idx, end_idx = slider_value
|
179 |
+
start_date = unique_dates[start_idx]
|
180 |
+
end_date = unique_dates[end_idx]
|
181 |
+
|
182 |
+
df_map_day = df_melted[(df_melted['date'] >= start_date) & (df_melted['date'] <= end_date)].groupby(
|
183 |
+
'region'
|
184 |
+
).mean().reset_index()
|
185 |
+
df_line = df_melted[(df_melted['date'] >= start_date) & (df_melted['date'] <= end_date)]
|
186 |
+
df_line_daily = daily_agg[(daily_agg['date'] >= start_date) & (daily_agg['date'] <= end_date)]
|
187 |
+
|
188 |
+
#Weekly max
|
189 |
+
weekly_max = df_melted[
|
190 |
+
(df_melted['date'] >= start_date) & (df_melted['date'] <= end_date)
|
191 |
+
].groupby(['region', 'week']).agg(weekly_max=('load_mw', 'max')).reset_index()
|
192 |
+
|
193 |
+
if clickData is None:
|
194 |
+
# No region clicked: show all regions
|
195 |
+
fig_map = px.choropleth_mapbox(
|
196 |
+
df_map_day,
|
197 |
+
geojson=geojson,
|
198 |
+
locations='region',
|
199 |
+
featureidkey='properties.NAME',
|
200 |
+
color='load_mw',
|
201 |
+
color_continuous_scale="Viridis",
|
202 |
+
mapbox_style="carto-positron",
|
203 |
+
zoom=5,
|
204 |
+
center={"lat": 43.5, "lon": -71.5},
|
205 |
+
opacity=0.7,
|
206 |
+
hover_name='region'
|
207 |
+
)
|
208 |
+
fig_map.update_layout(margin={"r":0,"t":0,"l":0,"b":0}, template='plotly_dark')
|
209 |
+
|
210 |
+
fig_line = px.line(
|
211 |
+
df_line, x='timestamp', y='load_mw', color='region',
|
212 |
+
title='Load Over Time (Selected Date Range)',
|
213 |
+
labels={'load_mw':'Load (MW)', 'timestamp':'Time'},
|
214 |
+
template='plotly_dark',
|
215 |
+
color_discrete_map=region_colors
|
216 |
+
)
|
217 |
+
fig_line.update_layout(hovermode="x unified", xaxis_title=None)
|
218 |
+
|
219 |
+
fig_weekly_max = go.Figure(layout={"template":"plotly_dark"})
|
220 |
+
fig_weekly_max.update_layout(
|
221 |
+
title="Weekly Max Load by Region",
|
222 |
+
xaxis_title=None,
|
223 |
+
yaxis_title="Load (MW)",
|
224 |
+
hovermode="x unified"
|
225 |
+
)
|
226 |
+
|
227 |
+
for region in weekly_max['region'].unique():
|
228 |
+
dff = weekly_max[weekly_max['region'] == region]
|
229 |
+
region_color = region_colors.get(region, "white")
|
230 |
+
fig_weekly_max.add_trace(
|
231 |
+
go.Scatter(
|
232 |
+
x=dff['week'], y=dff['weekly_max'],
|
233 |
+
mode='lines+markers',
|
234 |
+
line=dict(color=region_color, width=2),
|
235 |
+
marker=dict(color=region_color, size=6),
|
236 |
+
name=f"{region} Weekly Max"
|
237 |
+
)
|
238 |
+
)
|
239 |
+
|
240 |
+
return fig_map, fig_line, fig_weekly_max
|
241 |
+
|
242 |
+
# Region clicked
|
243 |
+
clicked_region = clickData['points'][0]['location']
|
244 |
+
dff = df_line[df_line['region'] == clicked_region]
|
245 |
+
dff_daily = df_line_daily[df_line_daily['region'] == clicked_region]
|
246 |
+
|
247 |
+
fig_map = px.choropleth_mapbox(
|
248 |
+
df_map_day,
|
249 |
+
geojson=geojson,
|
250 |
+
locations='region',
|
251 |
+
featureidkey='properties.NAME',
|
252 |
+
color='load_mw',
|
253 |
+
color_continuous_scale="Viridis",
|
254 |
+
mapbox_style="carto-positron",
|
255 |
+
zoom=5,
|
256 |
+
center={"lat": 43.5, "lon": -71.5},
|
257 |
+
opacity=0.7,
|
258 |
+
hover_name='region'
|
259 |
+
)
|
260 |
+
fig_map.update_layout(margin={"r":0,"t":0,"l":0,"b":0}, template='plotly_dark')
|
261 |
+
|
262 |
+
fig_line = px.line(
|
263 |
+
dff, x='timestamp', y='load_mw', color='region',
|
264 |
+
title=f'Load Over Time: {clicked_region} ({start_date} to {end_date})',
|
265 |
+
labels={'load_mw':'Load (MW)', 'timestamp':'Time'},
|
266 |
+
template='plotly_dark',
|
267 |
+
color_discrete_map=region_colors
|
268 |
+
)
|
269 |
+
fig_line.update_layout(hovermode="x unified")
|
270 |
+
|
271 |
+
fig_daily = go.Figure(layout={"template":"plotly_dark"})
|
272 |
+
region_color = region_colors.get(clicked_region, "white")
|
273 |
+
|
274 |
+
if not dff_daily.empty:
|
275 |
+
fig_daily.add_trace(go.Scatter(
|
276 |
+
x=dff_daily['date'], y=dff_daily['daily_max'],
|
277 |
+
mode='lines', line_color=region_color,
|
278 |
+
name='Daily Max'
|
279 |
+
))
|
280 |
+
fig_daily.add_trace(go.Scatter(
|
281 |
+
x=dff_daily['date'], y=dff_daily['daily_min'],
|
282 |
+
fill='tonexty', mode='lines', line_color=region_color,
|
283 |
+
name='Daily Min'
|
284 |
+
))
|
285 |
+
fig_daily.add_trace(go.Scatter(
|
286 |
+
x=dff_daily['date'], y=dff_daily['daily_avg'],
|
287 |
+
mode='lines+markers', line_color='white', name='Daily Avg'
|
288 |
+
))
|
289 |
+
|
290 |
+
fig_daily.update_layout(
|
291 |
+
title=f"Daily Load Summary: {clicked_region}",
|
292 |
+
xaxis_title="Date",
|
293 |
+
yaxis_title="Load (MW)",
|
294 |
+
hovermode="x unified"
|
295 |
+
)
|
296 |
+
|
297 |
+
return fig_map, fig_line, fig_daily
|
298 |
+
|
299 |
+
if __name__ == '__main__':
|
300 |
+
app.run_server(host='0.0.0.0', port=8050, debug=False)
|
data/gz_2010_us_040_00_500k.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
data/iso_ne_geojson.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
data/megawatt_demand_2024.csv
ADDED
The diff for this file is too large to render.
See raw diff
|
|
data/new_england_geojson.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
data/references.md
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
Thank you to the [US Energy Information Administration](https://www.eia.gov/electricity/wholesalemarkets/data.php?rto=isone) for the data.
|
geo_json_extract.py
ADDED
@@ -0,0 +1,33 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import json
|
2 |
+
import os
|
3 |
+
|
4 |
+
print(f'Current wd: {os.getcwd()}')
|
5 |
+
|
6 |
+
# Define the states you want to keep
|
7 |
+
new_england_states = {"Maine", "New Hampshire", "Vermont", "Massachusetts", "Rhode Island", "Connecticut"}
|
8 |
+
|
9 |
+
# Input and output file paths
|
10 |
+
input_file = "./figure_friday/2024/week_49/data/gz_2010_us_040_00_500k.json"
|
11 |
+
output_file = "./figure_friday/2024/week_49/data/new_england_geojson.json"
|
12 |
+
|
13 |
+
# Load the input GeoJSON
|
14 |
+
with open(input_file, "r", encoding="utf-8") as f:
|
15 |
+
data = json.load(f)
|
16 |
+
|
17 |
+
# Filter the features
|
18 |
+
filtered_features = []
|
19 |
+
for feature in data["features"]:
|
20 |
+
if feature["properties"].get("NAME") in new_england_states:
|
21 |
+
filtered_features.append(feature)
|
22 |
+
|
23 |
+
# Create a new GeoJSON FeatureCollection
|
24 |
+
filtered_data = {
|
25 |
+
"type": "FeatureCollection",
|
26 |
+
"features": filtered_features
|
27 |
+
}
|
28 |
+
|
29 |
+
# Write the filtered data to a new file
|
30 |
+
with open(output_file, "w", encoding="utf-8") as f:
|
31 |
+
json.dump(filtered_data, f, indent=2)
|
32 |
+
|
33 |
+
print(f"Filtered GeoJSON saved to {output_file}")
|
notebooks/newengland_power_demand.ipynb
ADDED
@@ -0,0 +1,36 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "markdown",
|
5 |
+
"metadata": {},
|
6 |
+
"source": [
|
7 |
+
"### #Figurefriday Week 49\n",
|
8 |
+
"\n",
|
9 |
+
"Getting amped up to take a look at power consumption rates across New England in 2024"
|
10 |
+
]
|
11 |
+
},
|
12 |
+
{
|
13 |
+
"cell_type": "code",
|
14 |
+
"execution_count": null,
|
15 |
+
"metadata": {},
|
16 |
+
"outputs": [],
|
17 |
+
"source": [
|
18 |
+
"import pandas as pd\n",
|
19 |
+
"import plotly.express as px"
|
20 |
+
]
|
21 |
+
}
|
22 |
+
],
|
23 |
+
"metadata": {
|
24 |
+
"kernelspec": {
|
25 |
+
"display_name": "figure_friday",
|
26 |
+
"language": "python",
|
27 |
+
"name": "python3"
|
28 |
+
},
|
29 |
+
"language_info": {
|
30 |
+
"name": "python",
|
31 |
+
"version": "3.9.15"
|
32 |
+
}
|
33 |
+
},
|
34 |
+
"nbformat": 4,
|
35 |
+
"nbformat_minor": 2
|
36 |
+
}
|
requirements.txt
ADDED
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
dash==2.18.2
|
2 |
+
dash-core-components==2.0.0
|
3 |
+
dash-html-components==2.0.0
|
4 |
+
Flask==3.0.3
|
5 |
+
plotly==5.24.1
|
6 |
+
pandas==1.5
|
7 |
+
numpy==1.26.4
|
8 |
+
gunicorn==20.1.0
|
9 |
+
|
10 |
+
|
11 |
+
|