tensorized commited on
Commit
50e5fc3
·
1 Parent(s): ff41c93

testing scitail

Browse files
Files changed (4) hide show
  1. app.py +282 -0
  2. ngram.py +74 -0
  3. streamlit.py +23 -0
  4. vis_data_card.py +406 -0
app.py ADDED
@@ -0,0 +1,282 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from collections import Counter
2
+
3
+ import numpy as np
4
+ import pandas as pd
5
+ import plotly.express as px
6
+ import streamlit as st
7
+ from datasets import load_dataset
8
+ from matplotlib import pyplot as plt
9
+ from matplotlib_venn import venn2, venn3
10
+ from ngram import get_tuples_manual_sentences
11
+ from rich import print as rprint
12
+
13
+ from bigbio.dataloader import BigBioConfigHelpers
14
+
15
+ # from matplotlib_venn_wordcloud import venn2_wordcloud, venn3_wordcloud
16
+
17
+
18
+ # vanilla tokenizer
19
+ def tokenizer(text, counter):
20
+ if not text:
21
+ return text, []
22
+ text = text.strip()
23
+ text = text.replace("\t", "")
24
+ text = text.replace("\n", "")
25
+ # split
26
+ text_list = text.split(" ")
27
+ return text, text_list
28
+
29
+
30
+ def norm(lengths):
31
+ mu = np.mean(lengths)
32
+ sigma = np.std(lengths)
33
+ return mu, sigma
34
+
35
+
36
+ def load_helper():
37
+ conhelps = BigBioConfigHelpers()
38
+ conhelps = conhelps.filtered(lambda x: x.dataset_name != "pubtator_central")
39
+ conhelps = conhelps.filtered(lambda x: x.is_bigbio_schema)
40
+ conhelps = conhelps.filtered(lambda x: not x.is_local)
41
+ rprint(
42
+ "loaded {} configs from {} datasets".format(
43
+ len(conhelps),
44
+ len(set([helper.dataset_name for helper in conhelps])),
45
+ )
46
+ )
47
+ return conhelps
48
+
49
+
50
+ _TEXT_MAPS = {
51
+ "bigbio_kb": ["text"],
52
+ "bigbio_text": ["text"],
53
+ "bigbio_qa": ["question", "context"],
54
+ "bigbio_te": ["premise", "hypothesis"],
55
+ "bigbio_tp": ["text_1", "text_2"],
56
+ "bigbio_pairs": ["text_1", "text_2"],
57
+ "bigbio_t2t": ["text_1", "text_2"],
58
+ }
59
+
60
+ IBM_COLORS = [
61
+ "#648fff",
62
+ "#dc267f",
63
+ "#ffb000",
64
+ "#fe6100",
65
+ "#785ef0",
66
+ "#000000",
67
+ "#ffffff",
68
+ ]
69
+
70
+ N = 3
71
+
72
+
73
+ def token_length_per_entry(entry, schema, counter):
74
+ result = {}
75
+ if schema == "bigbio_kb":
76
+ for passage in entry["passages"]:
77
+ result_key = passage["type"]
78
+ for key in _TEXT_MAPS[schema]:
79
+ text = passage[key][0]
80
+ sents, ngrams = get_tuples_manual_sentences(text.lower(), N)
81
+ toks = [tok for sent in sents for tok in sent]
82
+ tups = ["_".join(tup) for tup in ngrams]
83
+ counter.update(tups)
84
+ result[result_key] = len(toks)
85
+ else:
86
+ for key in _TEXT_MAPS[schema]:
87
+ text = entry[key]
88
+ sents, ngrams = get_tuples_manual_sentences(text.lower(), N)
89
+ toks = [tok for sent in sents for tok in sent]
90
+ result[key] = len(toks)
91
+ tups = ["_".join(tup) for tup in ngrams]
92
+ counter.update(tups)
93
+ return result, counter
94
+
95
+
96
+ def parse_token_length_and_n_gram(dataset, data_config, st=None):
97
+ hist_data = []
98
+ n_gram_counters = []
99
+ rprint(data_config)
100
+ for split, data in dataset.items():
101
+ my_bar = st.progress(0)
102
+ total = len(data)
103
+ n_gram_counter = Counter()
104
+ for i, entry in enumerate(data):
105
+ my_bar.progress(int(i / total * 100))
106
+ result, n_gram_counter = token_length_per_entry(
107
+ entry, data_config.schema, n_gram_counter
108
+ )
109
+ result["total_token_length"] = sum([v for k, v in result.items()])
110
+ result["split"] = split
111
+ hist_data.append(result)
112
+ # remove single count
113
+ # n_gram_counter = Counter({x: count for x, count in n_gram_counter.items() if count > 1})
114
+ n_gram_counters.append(n_gram_counter)
115
+ my_bar.empty()
116
+ st.write("token lengths complete!")
117
+
118
+ return pd.DataFrame(hist_data), n_gram_counters
119
+
120
+
121
+ def center_title(fig):
122
+ fig.update_layout(
123
+ title={"y": 0.9, "x": 0.5, "xanchor": "center", "yanchor": "top"},
124
+ font=dict(
125
+ size=18,
126
+ ),
127
+ )
128
+ return fig
129
+
130
+
131
+ def draw_histogram(hist_data, col_name, st=None):
132
+ fig = px.histogram(
133
+ hist_data,
134
+ x=col_name,
135
+ color="split",
136
+ color_discrete_sequence=IBM_COLORS,
137
+ marginal="box", # or violin, rug
138
+ barmode="group",
139
+ hover_data=hist_data.columns,
140
+ histnorm="probability",
141
+ nbins=20,
142
+ title=f"{col_name} distribution by split",
143
+ )
144
+
145
+ st.plotly_chart(center_title(fig), use_container_width=True)
146
+
147
+
148
+ def draw_bar(bar_data, x, y, st=None):
149
+ fig = px.bar(
150
+ bar_data,
151
+ x=x,
152
+ y=y,
153
+ color="split",
154
+ color_discrete_sequence=IBM_COLORS,
155
+ # marginal="box", # or violin, rug
156
+ barmode="group",
157
+ hover_data=bar_data.columns,
158
+ title=f"{y} distribution by split",
159
+ )
160
+ st.plotly_chart(center_title(fig), use_container_width=True)
161
+
162
+
163
+ def parse_metrics(metadata, st=None):
164
+ for k, m in metadata.items():
165
+ mattrs = m.__dict__
166
+ for m, attr in mattrs.items():
167
+ if type(attr) == int and attr > 0:
168
+ st.metric(label=f"{k}-{m}", value=attr)
169
+
170
+
171
+ def parse_counters(metadata):
172
+ metadata = metadata["train"] # using the training counter to fetch the names
173
+ counters = []
174
+ for k, v in metadata.__dict__.items():
175
+ if "counter" in k and len(v) > 0:
176
+ counters.append(k)
177
+ return counters
178
+
179
+
180
+ # generate the df for histogram
181
+ def parse_label_counter(metadata, counter_type):
182
+ hist_data = []
183
+ for split, m in metadata.items():
184
+ metadata_counter = getattr(m, counter_type)
185
+ for k, v in metadata_counter.items():
186
+ row = {}
187
+ row["labels"] = k
188
+ row[counter_type] = v
189
+ row["split"] = split
190
+ hist_data.append(row)
191
+ return pd.DataFrame(hist_data)
192
+
193
+
194
+ if __name__ == "__main__":
195
+ # load helpers
196
+ conhelps = load_helper()
197
+ configs_set = set()
198
+
199
+ for conhelper in conhelps:
200
+ configs_set.add(conhelper.dataset_name)
201
+ # st.write(sorted(configs_set))
202
+
203
+ # setup page, sidebar, columns
204
+ st.set_page_config(layout="wide")
205
+ s = st.session_state
206
+ if not s:
207
+ s.pressed_first_button = False
208
+ data_name = st.sidebar.selectbox("dataset", sorted(configs_set))
209
+ st.sidebar.write("you selected:", data_name)
210
+ st.header(f"Dataset stats for {data_name}")
211
+
212
+ # setup data configs
213
+ data_helpers = conhelps.for_dataset(data_name)
214
+ data_configs = [d.config for d in data_helpers]
215
+ data_config_names = [d.config.name for d in data_helpers]
216
+ data_config_name = st.sidebar.selectbox("config", set(data_config_names))
217
+
218
+ if st.sidebar.button("fetch") or s.pressed_first_button:
219
+ s.pressed_first_button = True
220
+ helper = conhelps.for_config_name(data_config_name)
221
+ metadata_helper = helper.get_metadata()
222
+
223
+ parse_metrics(metadata_helper, st.sidebar)
224
+
225
+ # load HF dataset
226
+ data_idx = data_config_names.index(data_config_name)
227
+ data_config = data_configs[data_idx]
228
+ # st.write(data_name)
229
+
230
+ dataset = load_dataset(
231
+ f"bigbio/{data_name}", name=data_config_name
232
+ )
233
+ ds = pd.DataFrame(dataset["train"])
234
+ st.write(ds)
235
+ # general token length
236
+ tok_hist_data, ngram_counters = parse_token_length_and_n_gram(
237
+ dataset, data_config, st.sidebar
238
+ )
239
+ # draw token distribution
240
+ draw_histogram(tok_hist_data, "total_token_length", st)
241
+ # general counter(s)
242
+ col1, col2 = st.columns([1, 6])
243
+ counters = parse_counters(metadata_helper)
244
+ counter_type = col1.selectbox("counter_type", counters)
245
+ label_df = parse_label_counter(metadata_helper, counter_type)
246
+ label_max = int(label_df[counter_type].max() - 1)
247
+ label_min = int(label_df[counter_type].min())
248
+ filter_value = col1.slider("counter_filter (min, max)", label_min, label_max)
249
+ label_df = label_df[label_df[counter_type] >= filter_value]
250
+ # draw bar chart for counter
251
+ draw_bar(label_df, "labels", counter_type, col2)
252
+ venn_fig, ax = plt.subplots()
253
+ if len(ngram_counters) == 2:
254
+ union_counter = ngram_counters[0] + ngram_counters[1]
255
+ print(ngram_counters[0].most_common(10))
256
+ print(ngram_counters[1].most_common(10))
257
+ total = len(union_counter.keys())
258
+ ngram_counter_sets = [
259
+ set(ngram_counter.keys()) for ngram_counter in ngram_counters
260
+ ]
261
+ venn2(
262
+ ngram_counter_sets,
263
+ dataset.keys(),
264
+ set_colors=IBM_COLORS[:3],
265
+ subset_label_formatter=lambda x: f"{(x/total):1.0%}",
266
+ )
267
+ else:
268
+ union_counter = ngram_counters[0] + ngram_counters[1] + ngram_counters[2]
269
+ total = len(union_counter.keys())
270
+ ngram_counter_sets = [
271
+ set(ngram_counter.keys()) for ngram_counter in ngram_counters
272
+ ]
273
+ venn3(
274
+ ngram_counter_sets,
275
+ dataset.keys(),
276
+ set_colors=IBM_COLORS[:4],
277
+ subset_label_formatter=lambda x: f"{(x/total):1.0%}",
278
+ )
279
+ venn_fig.suptitle(f"{N}-gram intersection for {data_name}", fontsize=20)
280
+ st.pyplot(venn_fig)
281
+
282
+ st.sidebar.button("Re-run")
ngram.py ADDED
@@ -0,0 +1,74 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # partially from https://gist.github.com/gaulinmp/da5825de975ed0ea6a24186434c24fe4
2
+ from nltk.util import ngrams
3
+ from nltk.corpus import stopwords
4
+ import spacy
5
+ import pandas as pd
6
+ import re
7
+ from itertools import chain
8
+ from collections import Counter
9
+ from datasets import load_dataset
10
+
11
+
12
+ nlp = spacy.load("en_core_web_sm")
13
+ nlp.add_pipe("sentencizer")
14
+ STOPWORDS = nlp.Defaults.stop_words
15
+
16
+ N = 5
17
+ re_sent_ends_naive = re.compile(r'[.\n]')
18
+ re_stripper_naive = re.compile('[^a-zA-Z\.\n]')
19
+
20
+ splitter_naive = lambda x: re_sent_ends_naive.split(re_stripper_naive.sub(' ', x))
21
+
22
+
23
+ # list of tokens for one sentence
24
+ def remove_stop_words(text):
25
+ result = []
26
+ for w in text:
27
+ if w not in STOPWORDS:
28
+ result.append(w)
29
+ return result
30
+
31
+
32
+ # get sentence from multiple sentences
33
+ def parse_sentences(text, nlp):
34
+ doc = nlp(text)
35
+ sentences = (remove_stop_words(sent) for sent in doc.sents)
36
+ return sentences
37
+
38
+
39
+ def get_tuples_manual_sentences(txt, N):
40
+ """Naive get tuples that uses periods or newlines to denote sentences."""
41
+ if not txt:
42
+ return None, []
43
+ sentences = (x.split() for x in splitter_naive(txt) if x)
44
+ sentences = list(map(remove_stop_words, list(sentences)))
45
+ # sentences = (remove_stop_words(nlp(x)) for x in splitter_naive(txt) if x)
46
+ # sentences = parse_sentences(txt, nlp)
47
+ # print(list(sentences))
48
+ ng = (ngrams(x, N) for x in sentences if len(x) >= N)
49
+ return sentences, list(chain(*ng))
50
+
51
+
52
+ def count_by_split(split_data):
53
+ c = Counter()
54
+ for entry in split_data:
55
+ text = entry['text']
56
+ sents, tup = get_tuples_manual_sentences(text, N)
57
+ tup = ["_".join(ta) for ta in tup]
58
+ c.update(tup)
59
+ return c
60
+
61
+
62
+ # data = load_dataset("bigbio/biodatasets/chemdner/chemdner.py", name="chemdner_bigbio_text")
63
+ # counters = []
64
+ # for split, split_data in data.items():
65
+ # split_counter = count_by_split(split_data)
66
+ # counters.append(split_counter)
67
+
68
+ # ab_intersect = counters[0] & counters[1]
69
+ # diff = {x: count for x, count in counters[0].items() if x not in ab_intersect.keys() and count > 2}
70
+ # if len(counters) > 2:
71
+ # bc_intersect = counters[1] & counters[2]
72
+ # print(ab_intersect.most_common(10))
73
+ # print(Counter(diff).most_common(10))
74
+ # data.cleanup_cache_files()
streamlit.py ADDED
@@ -0,0 +1,23 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import streamlit as st
2
+ import pandas as pd
3
+ import numpy as np
4
+ from bigbio.dataloader import BigBioConfigHelpers
5
+
6
+
7
+ from datasets import load_dataset
8
+ dataset = load_dataset("bigbio/scitail", name="scitail_bigbio_te")
9
+
10
+ ds = pd.DataFrame(dataset["train"])
11
+ st.write(ds)
12
+
13
+
14
+ conhelps = BigBioConfigHelpers()
15
+ conhelps = conhelps.filtered(lambda x: x.dataset_name != "pubtator_central")
16
+ conhelps = conhelps.filtered(lambda x: x.is_bigbio_schema)
17
+ conhelps = conhelps.filtered(lambda x: not x.is_local)
18
+ st.write(
19
+ "loaded {} configs from {} datasets".format(
20
+ len(conhelps),
21
+ len(set([helper.dataset_name for helper in conhelps])),
22
+ )
23
+ )
vis_data_card.py ADDED
@@ -0,0 +1,406 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # from matplotlib_venn import venn2, venn3
2
+ import json
3
+
4
+ import numpy as np
5
+ import pandas as pd
6
+ import plotly.graph_objects as go
7
+ import plotly.io as pio
8
+ from datasets import load_dataset
9
+ from plotly.subplots import make_subplots
10
+ from rich import print as rprint
11
+
12
+ from collections import Counter
13
+
14
+ from ngram import get_tuples_manual_sentences
15
+
16
+ from bigbio.dataloader import BigBioConfigHelpers
17
+ import sys
18
+
19
+ pio.kaleido.scope.mathjax = None
20
+
21
+
22
+ # vanilla tokenizer
23
+ def tokenizer(text, counter):
24
+ if not text:
25
+ return text, []
26
+ text = text.strip()
27
+ text = text.replace("\t", "")
28
+ text = text.replace("\n", "")
29
+ # split
30
+ text_list = text.split(" ")
31
+ return text, text_list
32
+
33
+
34
+ def norm(lengths):
35
+ mu = np.mean(lengths)
36
+ sigma = np.std(lengths)
37
+ return mu, sigma
38
+
39
+
40
+ def load_helper(local=""):
41
+ if local != "":
42
+ with open(local, "r") as file:
43
+ conhelps = json.load(file)
44
+ else:
45
+ conhelps = BigBioConfigHelpers()
46
+ conhelps = conhelps.filtered(lambda x: x.dataset_name != "pubtator_central")
47
+ conhelps = conhelps.filtered(lambda x: x.is_bigbio_schema)
48
+ conhelps = conhelps.filtered(lambda x: not x.is_local)
49
+ rprint(
50
+ "loaded {} configs from {} datasets".format(
51
+ len(conhelps),
52
+ len(set([helper.dataset_name for helper in conhelps])),
53
+ )
54
+ )
55
+ return conhelps
56
+
57
+
58
+ _TEXT_MAPS = {
59
+ "bigbio_kb": ["text"],
60
+ "bigbio_text": ["text"],
61
+ "bigbio_qa": ["question", "context"],
62
+ "bigbio_te": ["premise", "hypothesis"],
63
+ "bigbio_tp": ["text_1", "text_2"],
64
+ "bigbio_pairs": ["text_1", "text_2"],
65
+ "bigbio_t2t": ["text_1", "text_2"],
66
+ }
67
+
68
+ IBM_COLORS = [
69
+ "#648fff", # train
70
+ "#dc267f", # val
71
+ "#ffb000", # test
72
+ "#fe6100",
73
+ "#785ef0",
74
+ "#000000",
75
+ "#ffffff",
76
+ ]
77
+
78
+ SPLIT_COLOR_MAP = {
79
+ "train": "#648fff",
80
+ "validation": "#dc267f",
81
+ "test": "#ffb000",
82
+ }
83
+
84
+ N = 3
85
+
86
+
87
+ def token_length_per_entry(entry, schema, counter):
88
+ result = {}
89
+ entry_id = entry['id']
90
+ if schema == "bigbio_kb":
91
+ for passage in entry["passages"]:
92
+ result_key = passage["type"]
93
+ for key in _TEXT_MAPS[schema]:
94
+ text = passage[key][0]
95
+ if not text:
96
+ print(f"WARNING: text key does not exist: entry {entry_id}")
97
+ result["token_length"] = 0
98
+ result["text_type"] = result_key
99
+ continue
100
+ sents, ngrams = get_tuples_manual_sentences(text.lower(), N)
101
+ toks = [tok for sent in sents for tok in sent]
102
+ tups = ["_".join(tup) for tup in ngrams]
103
+ counter.update(tups)
104
+ result["token_length"] = len(toks)
105
+ result["text_type"] = result_key
106
+ else:
107
+ for key in _TEXT_MAPS[schema]:
108
+ text = entry[key]
109
+ if not text:
110
+ print(f"WARNING: text key does not exist, entry {entry_id}")
111
+ result["token_length"] = 0
112
+ result["text_type"] = key
113
+ continue
114
+ else:
115
+ sents, ngrams = get_tuples_manual_sentences(text.lower(), N)
116
+ toks = [tok for sent in sents for tok in sent]
117
+ result["token_length"] = len(toks)
118
+ result["text_type"] = key
119
+ tups = ["_".join(tup) for tup in ngrams]
120
+ counter.update(tups)
121
+ return result, counter
122
+
123
+
124
+ def parse_token_length_and_n_gram(dataset, schema_type):
125
+ hist_data = []
126
+ n_gram_counters = []
127
+ for split, data in dataset.items():
128
+ n_gram_counter = Counter()
129
+ for i, entry in enumerate(data):
130
+ result, n_gram_counter = token_length_per_entry(
131
+ entry, schema_type, n_gram_counter
132
+ )
133
+ result["split"] = split
134
+ hist_data.append(result)
135
+ n_gram_counters.append(n_gram_counter)
136
+
137
+ return pd.DataFrame(hist_data), n_gram_counters
138
+
139
+
140
+ def resolve_splits(df_split):
141
+ official_splits = set(df_split).intersection(set(SPLIT_COLOR_MAP.keys()))
142
+ return official_splits
143
+
144
+
145
+ def draw_box(df, col_name, row, col, fig):
146
+ splits = resolve_splits(df["split"].unique())
147
+ for split in splits:
148
+ split_count = df.loc[df["split"] == split, col_name].tolist()
149
+ print(split)
150
+ fig.add_trace(
151
+ go.Box(
152
+ x=split_count,
153
+ name=split,
154
+ marker_color=SPLIT_COLOR_MAP[split.split("_")[0]],
155
+ ),
156
+ row=row,
157
+ col=col,
158
+ )
159
+
160
+
161
+ def draw_bar(df, col_name, y_name, row, col, fig):
162
+ splits = resolve_splits(df["split"].unique())
163
+ for split in splits:
164
+ split_count = df.loc[df["split"] == split, col_name].tolist()
165
+ y_list = df.loc[df["split"] == split, y_name].tolist()
166
+ fig.add_trace(
167
+ go.Bar(
168
+ x=split_count,
169
+ y=y_list,
170
+ name=split,
171
+ marker_color=SPLIT_COLOR_MAP[split.split("_")[0]],
172
+ showlegend=False,
173
+ ),
174
+ row=row,
175
+ col=col,
176
+ )
177
+ fig.update_traces(orientation="h") # horizontal box plots
178
+
179
+
180
+ def parse_counters(metadata):
181
+ metadata = metadata[
182
+ list(metadata.keys())[0]
183
+ ] # using the training counter to fetch the names
184
+ counters = []
185
+ for k, v in metadata.__dict__.items():
186
+ if "counter" in k and len(v) > 0:
187
+ counters.append(k)
188
+ return counters
189
+
190
+
191
+ # generate the df for histogram
192
+ def parse_label_counter(metadata, counter_type):
193
+ hist_data = []
194
+ for split, m in metadata.items():
195
+ metadata_counter = getattr(m, counter_type)
196
+ for k, v in metadata_counter.items():
197
+ row = {}
198
+ row["labels"] = k
199
+ row[counter_type] = v
200
+ row["split"] = split
201
+ hist_data.append(row)
202
+ return pd.DataFrame(hist_data)
203
+
204
+
205
+ def gen_latex(dataset_name, helper, splits, schemas, fig_path):
206
+ if type(helper.description) is dict:
207
+ # TODO hacky, change this to include all decsriptions
208
+ descriptions = helper.description[list(helper.description.keys())[0]]
209
+ else:
210
+ descriptions = helper.description
211
+ descriptions = descriptions.replace("\n", "").replace("\t", "")
212
+ langs = [l.value for l in helper.languages]
213
+ languages = " ".join(langs)
214
+ if type(helper.license) is dict:
215
+ license = helper.license.value.name
216
+ else:
217
+ license = helper.license.name
218
+ tasks = [" ".join(t.name.lower().split("_")) for t in helper.tasks]
219
+ tasks = ", ".join(tasks)
220
+ schemas = " ".join([r"{\tt "] + list(schemas) + ["}"]) # TODO \tt
221
+ splits = ", ".join(list(splits))
222
+ data_name_display = " ".join(data_name.split("_"))
223
+ latex_bod = r"\clearpage" + "\n" + r"\section*{" + fr"{data_name_display}" + " Data Card" + r"}" + "\n"
224
+ latex_bod += (
225
+ r"\begin{figure}[ht!]"
226
+ + "\n"
227
+ + r"\centering"
228
+ + "\n"
229
+ + r"\includegraphics[width=\linewidth]{"
230
+ )
231
+ latex_bod += f"{fig_path}" + r"}" + "\n"
232
+ latex_bod += r"\caption{\label{fig:"
233
+ latex_bod += fr"{data_name}" + r"}"
234
+ latex_bod += (
235
+ r"Token frequency distribution by split (top) and frequency of different kind of instances (bottom).}"
236
+ + "\n"
237
+ )
238
+ latex_bod += r"\end{figure}" + "\n" + r"\textbf{Dataset Description} "
239
+ latex_bod += (
240
+ fr"{descriptions}"
241
+ + "\n"
242
+ + r"\textbf{Homepage:} "
243
+ + f"{helper.homepage}"
244
+ + "\n"
245
+ + r"\textbf{URL:} "
246
+ + f"{helper.homepage}" # TODO change this later
247
+ + "\n"
248
+ + r"\textbf{Licensing:} "
249
+ + f"{license}"
250
+ + "\n"
251
+ + r"\textbf{Languages:} "
252
+ + f"{languages}"
253
+ + "\n"
254
+ + r"\textbf{Tasks:} "
255
+ + f"{tasks}"
256
+ + "\n"
257
+ + r"\textbf{Schemas:} "
258
+ + f"{schemas}"
259
+ + "\n"
260
+ + r"\textbf{Splits:} "
261
+ + f"{splits}"
262
+ )
263
+ return latex_bod
264
+
265
+
266
+ def write_latex(latex_body, latex_name):
267
+ text_file = open(f"tex/{latex_name}", "w")
268
+ text_file.write(latex_body)
269
+ text_file.close()
270
+
271
+
272
+ def draw_figure(data_name, data_config_name, schema_type):
273
+ helper = conhelps.for_config_name(data_config_name)
274
+ metadata_helper = helper.get_metadata() # calls load_dataset for meta parsing
275
+ rprint(metadata_helper)
276
+ splits = metadata_helper.keys()
277
+ # calls HF load_dataset _again_ for token parsing
278
+ dataset = load_dataset(
279
+ f"bigbio/biodatasets/{data_name}/{data_name}.py", name=data_config_name
280
+ )
281
+ # general token length
282
+ tok_hist_data, ngram_counters = parse_token_length_and_n_gram(dataset, schema_type)
283
+ rprint(helper)
284
+
285
+ # general counter(s)
286
+ # TODO generate the pdf and fix latex
287
+
288
+ counters = parse_counters(metadata_helper)
289
+ print(counters)
290
+ rows = len(counters) // 3
291
+ if len(counters) >= 3:
292
+ # counters = counters[:3]
293
+ cols = 3
294
+ specs = [[{"colspan": 3}, None, None]] + [[{}, {}, {}]] * (rows + 1)
295
+ elif len(counters) == 1:
296
+ specs = [[{}], [{}]]
297
+ cols = 1
298
+ elif len(counters) == 2:
299
+ specs = [[{"colspan": 2}, None]] + [[{}, {}]] * (rows + 1)
300
+ cols = 2
301
+ counters.sort()
302
+
303
+ counter_titles = ["Label Counts by Type: " + ct.split("_")[0] for ct in counters]
304
+ titles = ("token length",) + tuple(counter_titles)
305
+ # Make figure with subplots
306
+ fig = make_subplots(
307
+ rows=rows + 2,
308
+ cols=cols,
309
+ subplot_titles=titles,
310
+ specs=specs,
311
+ vertical_spacing=0.10,
312
+ horizontal_spacing=0.10,
313
+ )
314
+ # draw token distribution
315
+ if "token_length" in tok_hist_data.keys():
316
+ draw_box(tok_hist_data, "token_length", row=1, col=1, fig=fig)
317
+ for i, ct in enumerate(counters):
318
+ row = i // 3 + 2
319
+ col = i % 3 + 1
320
+ label_df = parse_label_counter(metadata_helper, ct)
321
+ label_min = int(label_df[ct].min())
322
+ # filter_value = int((label_max - label_min) * 0.01 + label_min)
323
+ label_df = label_df[label_df[ct] >= label_min]
324
+ print(label_df.head(5))
325
+
326
+ # draw bar chart for counter
327
+ draw_bar(label_df, ct, "labels", row=row, col=col, fig=fig)
328
+
329
+ fig.update_annotations(font_size=12)
330
+ fig.update_layout(
331
+ margin=dict(l=25, r=25, t=25, b=25, pad=2),
332
+ # showlegend=False,
333
+ # title_text=data_name,
334
+ height=600,
335
+ width=1000,
336
+ )
337
+
338
+ # fig.show()
339
+ fig_name = f"{data_name}_{data_config_name}.pdf"
340
+
341
+ fig_path = f"figures/data_card/{fig_name}"
342
+ fig.write_image(fig_path)
343
+ dataset.cleanup_cache_files()
344
+
345
+ return helper, splits, fig_path
346
+
347
+
348
+ if __name__ == "__main__":
349
+ # load helpers
350
+ # each entry in local metadata is the dataset name
351
+ dc_local = load_helper(local="scripts/bigbio-public-metadatas-6-8.json")
352
+ # each entry is the config
353
+ conhelps = load_helper()
354
+ dc = list()
355
+ # TODO uncomment this
356
+ # for conhelper in conhelps:
357
+ # # print(f"{conhelper.dataset_name}-{conhelper.config.subset_id}-{conhelper.config.schema}")
358
+ # dc.append(conhelper.dataset_name)
359
+
360
+ # datacard per data, metadata chart per config
361
+ # for data_name, meta in dc_local.items():
362
+ # config_metas = meta['config_metas']
363
+ # config_metas_keys = config_metas.keys()
364
+ # if len(config_metas_keys) > 1:
365
+ # print(f'dataset {data_name} has more than one config')
366
+ # schemas = set()
367
+ # for config_name, config in config_metas.items():
368
+ # bigbio_schema = config['bigbio_schema']
369
+ # helper, splits, fig_path = draw_figure(data_name, config_name, bigbio_schema)
370
+ # schemas.add(helper.bigbio_schema_caps)
371
+ # latex_bod = gen_latex(data_name, helper, splits, schemas, fig_path)
372
+ # latex_name = f"{data_name}_{config_name}.tex"
373
+ # write_latex(latex_bod, latex_name)
374
+ # print(latex_bod)
375
+
376
+ # TODO try this code first, then use this for the whole loop
377
+ # skipped medal, too large, no nagel/pcr/pubtator_central/spl_adr_200db in local
378
+ data_name = sys.argv[1]
379
+ schemas = set()
380
+ # LOCAL
381
+ # meta = dc_local[data_name]
382
+ # config_metas = meta['config_metas']
383
+ # config_metas_keys = config_metas.keys()
384
+ # if len(config_metas_keys) >= 1:
385
+ # print(f'dataset {data_name} has more than one config')
386
+ # for config_name, config in config_metas.items():
387
+ # bigbio_schema = config['bigbio_schema']
388
+ # helper, splits, fig_path = draw_figure(data_name, config_name, bigbio_schema)
389
+ # schemas.add(helper.bigbio_schema_caps)
390
+ # latex_bod = gen_latex(data_name, helper, splits, schemas, fig_path)
391
+ # latex_name = f"{data_name}_{config_name}.tex"
392
+ # write_latex(latex_bod, latex_name)
393
+ # print(latex_bod)
394
+ # NON LOCAL
395
+ config_helpers = conhelps.for_dataset(data_name)
396
+ for config_helper in config_helpers:
397
+ rprint(config_helper)
398
+ bigbio_schema = config_helper.config.schema
399
+ config_name = config_helper.config.name
400
+ helper, splits, fig_path = draw_figure(data_name, config_name, bigbio_schema)
401
+ schemas.add(helper.bigbio_schema_caps)
402
+ latex_bod = gen_latex(data_name, helper, splits, schemas, fig_path)
403
+ latex_name = f"{data_name}_{config_name}.tex"
404
+ write_latex(latex_bod, latex_name)
405
+ print(latex_bod)
406
+