|
import gradio as gr |
|
|
|
from huggan.pytorch.pix2pix.modeling_pix2pix import GeneratorUNet |
|
from PIL import Image |
|
from torchvision.utils import save_image |
|
from torchvision.transforms import Compose, Resize, ToTensor, Normalize, ToPILImage |
|
from diffusers.utils import load_image, make_image_grid |
|
|
|
transform = Compose( |
|
[ |
|
Resize((256, 256), Image.BICUBIC), |
|
ToTensor(), |
|
Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)), |
|
] |
|
) |
|
|
|
transform2 = Compose( |
|
[ |
|
|
|
ToPILImage(), |
|
|
|
] |
|
) |
|
|
|
generator = GeneratorUNet.from_pretrained("debisoft/gimp-pred-gan") |
|
|
|
def greet(input): |
|
coord_zxy = input |
|
image = load_image("https://c.basemaps.cartocdn.com/rastertiles/voyager_labels_under" + coord_zxy + ".png") |
|
pixel_values = transform(image).unsqueeze(0) |
|
output = generator(pixel_values) |
|
|
|
return transform2(output[0]) |
|
|
|
iface = gr.Interface(fn=greet, inputs=[gr.Textbox(label="coord_zxy", value="/18/73237/95677")], outputs=[gr.Image(type="pil", width=256, label="Output Image")]) |
|
iface.queue(api_open=True); |
|
iface.launch() |
|
|