import gradio as gr from huggan.pytorch.pix2pix.modeling_pix2pix import GeneratorUNet from PIL import Image from torchvision.utils import save_image from torchvision.transforms import Compose, Resize, ToTensor, Normalize, ToPILImage from diffusers.utils import load_image, make_image_grid transform = Compose( [ Resize((256, 256), Image.BICUBIC), ToTensor(), Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)), ] ) transform2 = Compose( [ #Resize((256, 256), Image.BICUBIC), ToPILImage(), #Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)), ] ) generator = GeneratorUNet.from_pretrained("debisoft/gimp-pred-gan") def greet(input): coord_zxy = input image = load_image("https://c.basemaps.cartocdn.com/rastertiles/voyager_labels_under" + coord_zxy + ".png") pixel_values = transform(image).unsqueeze(0) output = generator(pixel_values) return transform2(output[0]) iface = gr.Interface(fn=greet, inputs=[gr.Textbox(label="coord_zxy", value="/18/73237/95677")], outputs=[gr.Image(type="pil", width=256, label="Output Image")]) iface.queue(api_open=True); iface.launch()