Spaces:
Sleeping
Sleeping
app.py
CHANGED
@@ -122,17 +122,36 @@ ab_t[0] = 1
|
|
122 |
# construct model
|
123 |
nn_model = ContextUnet(in_channels=3, n_feat=n_feat, n_cfeat=n_cfeat, height=height).to(device)
|
124 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
125 |
def greet(input):
|
126 |
-
|
127 |
-
|
128 |
-
Text: ```{input}```
|
129 |
-
"""
|
130 |
-
response = prompt
|
131 |
return response
|
132 |
|
133 |
#iface = gr.Interface(fn=greet, inputs="text", outputs="text")
|
134 |
#iface.launch()
|
135 |
|
136 |
#iface = gr.Interface(fn=greet, inputs=[gr.Textbox(label="Text to find entities", lines=2)], outputs=[gr.HighlightedText(label="Text with entities")], title="NER with dslim/bert-base-NER", description="Find entities using the `dslim/bert-base-NER` model under the hood!", allow_flagging="never", examples=["My name is Andrew and I live in California", "My name is Poli and work at HuggingFace"])
|
137 |
-
iface = gr.Interface(fn=greet, inputs=[gr.Textbox(label="Co-Retailing Business")], outputs="
|
138 |
iface.launch()
|
|
|
122 |
# construct model
|
123 |
nn_model = ContextUnet(in_channels=3, n_feat=n_feat, n_cfeat=n_cfeat, height=height).to(device)
|
124 |
|
125 |
+
# sample quickly using DDIM
|
126 |
+
@torch.no_grad()
|
127 |
+
def sample_ddim(n_sample, n=20):
|
128 |
+
# x_T ~ N(0, 1), sample initial noise
|
129 |
+
samples = torch.randn(n_sample, 3, height, height).to(device)
|
130 |
+
|
131 |
+
# array to keep track of generated steps for plotting
|
132 |
+
intermediate = []
|
133 |
+
step_size = timesteps // n
|
134 |
+
for i in range(timesteps, 0, -step_size):
|
135 |
+
print(f'sampling timestep {i:3d}', end='\r')
|
136 |
+
|
137 |
+
# reshape time tensor
|
138 |
+
t = torch.tensor([i / timesteps])[:, None, None, None].to(device)
|
139 |
+
|
140 |
+
eps = nn_model(samples, t) # predict noise e_(x_t,t)
|
141 |
+
samples = denoise_ddim(samples, i, i - step_size, eps)
|
142 |
+
intermediate.append(samples.detach().cpu().numpy())
|
143 |
+
|
144 |
+
intermediate = np.stack(intermediate)
|
145 |
+
return samples, intermediate
|
146 |
+
|
147 |
def greet(input):
|
148 |
+
samples, intermediate = sample_ddim(32, n=25)
|
149 |
+
response = intermediate[-1]
|
|
|
|
|
|
|
150 |
return response
|
151 |
|
152 |
#iface = gr.Interface(fn=greet, inputs="text", outputs="text")
|
153 |
#iface.launch()
|
154 |
|
155 |
#iface = gr.Interface(fn=greet, inputs=[gr.Textbox(label="Text to find entities", lines=2)], outputs=[gr.HighlightedText(label="Text with entities")], title="NER with dslim/bert-base-NER", description="Find entities using the `dslim/bert-base-NER` model under the hood!", allow_flagging="never", examples=["My name is Andrew and I live in California", "My name is Poli and work at HuggingFace"])
|
156 |
+
iface = gr.Interface(fn=greet, inputs=[gr.Textbox(label="Co-Retailing Business")], outputs="image")
|
157 |
iface.launch()
|