Spaces:
Sleeping
Sleeping
File size: 5,165 Bytes
f1069cc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 |
import os
import torch
import socket
try:
import horovod.torch as hvd
except ImportError:
hvd = None
def is_global_master(args):
return args.rank == 0
def is_local_master(args):
return args.local_rank == 0
def is_master(args, local=False):
return is_local_master(args) if local else is_global_master(args)
def is_using_horovod():
# NOTE w/ horovod run, OMPI vars should be set, but w/ SLURM PMI vars will be set
# Differentiating between horovod and DDP use via SLURM may not be possible, so horovod arg still required...
ompi_vars = ["OMPI_COMM_WORLD_RANK", "OMPI_COMM_WORLD_SIZE"]
pmi_vars = ["PMI_RANK", "PMI_SIZE"]
if all([var in os.environ for var in ompi_vars]) or all(
[var in os.environ for var in pmi_vars]
):
return True
else:
return False
def is_using_distributed():
if "WORLD_SIZE" in os.environ:
return int(os.environ["WORLD_SIZE"]) > 1
if "SLURM_NTASKS" in os.environ:
return int(os.environ["SLURM_NTASKS"]) > 1
return False
def world_info_from_env():
local_rank = 0
for v in (
"SLURM_LOCALID",
"MPI_LOCALRANKID",
"OMPI_COMM_WORLD_LOCAL_RANK",
"LOCAL_RANK",
):
if v in os.environ:
local_rank = int(os.environ[v])
break
global_rank = 0
for v in ("SLURM_PROCID", "PMI_RANK", "OMPI_COMM_WORLD_RANK", "RANK"):
if v in os.environ:
global_rank = int(os.environ[v])
break
world_size = 1
for v in ("SLURM_NTASKS", "PMI_SIZE", "OMPI_COMM_WORLD_SIZE", "WORLD_SIZE"):
if v in os.environ:
world_size = int(os.environ[v])
break
return local_rank, global_rank, world_size
def init_distributed_device(args):
# Distributed training = training on more than one GPU.
# Works in both single and multi-node scenarios.
args.distributed = False
args.world_size = 1
args.rank = 0 # global rank
args.local_rank = 0
if args.horovod:
assert hvd is not None, "Horovod is not installed"
hvd.init()
world_size = int(os.environ["OMPI_COMM_WORLD_SIZE"])
world_rank = int(os.environ["OMPI_COMM_WORLD_RANK"])
local_rank = int(os.environ["OMPI_COMM_WORLD_LOCAL_RANK"])
args.local_rank = local_rank
args.rank = world_rank
args.world_size = world_size
# args.local_rank = int(hvd.local_rank())
# args.rank = hvd.rank()
# args.world_size = hvd.size()
args.distributed = True
os.environ["LOCAL_RANK"] = str(args.local_rank)
os.environ["RANK"] = str(args.rank)
os.environ["WORLD_SIZE"] = str(args.world_size)
print(
f"Distributed training: local_rank={args.local_rank}, "
f"rank={args.rank}, world_size={args.world_size}, "
f"hostname={socket.gethostname()}, pid={os.getpid()}"
)
elif is_using_distributed():
if "SLURM_PROCID" in os.environ:
# DDP via SLURM
args.local_rank, args.rank, args.world_size = world_info_from_env()
# SLURM var -> torch.distributed vars in case needed
os.environ["LOCAL_RANK"] = str(args.local_rank)
os.environ["RANK"] = str(args.rank)
os.environ["WORLD_SIZE"] = str(args.world_size)
torch.distributed.init_process_group(
backend=args.dist_backend,
init_method=args.dist_url,
world_size=args.world_size,
rank=args.rank,
)
elif "OMPI_COMM_WORLD_SIZE" in os.environ: # using Summit cluster
world_size = int(os.environ["OMPI_COMM_WORLD_SIZE"])
world_rank = int(os.environ["OMPI_COMM_WORLD_RANK"])
local_rank = int(os.environ["OMPI_COMM_WORLD_LOCAL_RANK"])
args.local_rank = local_rank
args.rank = world_rank
args.world_size = world_size
torch.distributed.init_process_group(
backend=args.dist_backend,
init_method=args.dist_url,
world_size=args.world_size,
rank=args.rank,
)
else:
# DDP via torchrun, torch.distributed.launch
args.local_rank, _, _ = world_info_from_env()
torch.distributed.init_process_group(
backend=args.dist_backend, init_method=args.dist_url
)
args.world_size = torch.distributed.get_world_size()
args.rank = torch.distributed.get_rank()
args.distributed = True
print(
f"Distributed training: local_rank={args.local_rank}, "
f"rank={args.rank}, world_size={args.world_size}, "
f"hostname={socket.gethostname()}, pid={os.getpid()}"
)
if torch.cuda.is_available():
if args.distributed and not args.no_set_device_rank:
device = "cuda:%d" % args.local_rank
else:
device = "cuda:0"
torch.cuda.set_device(device)
else:
device = "cpu"
args.device = device
device = torch.device(device)
return device
|