File size: 15,117 Bytes
f1069cc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
# coding=utf-8
# Copyright 2023 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Conversion script for the LDM checkpoints. """

import argparse
import json

import torch

from diffusers import DDPMScheduler, LDMPipeline, UNet2DModel, VQModel


def shave_segments(path, n_shave_prefix_segments=1):
    """
    Removes segments. Positive values shave the first segments, negative shave the last segments.
    """
    if n_shave_prefix_segments >= 0:
        return ".".join(path.split(".")[n_shave_prefix_segments:])
    else:
        return ".".join(path.split(".")[:n_shave_prefix_segments])


def renew_resnet_paths(old_list, n_shave_prefix_segments=0):
    """
    Updates paths inside resnets to the new naming scheme (local renaming)
    """
    mapping = []
    for old_item in old_list:
        new_item = old_item.replace("in_layers.0", "norm1")
        new_item = new_item.replace("in_layers.2", "conv1")

        new_item = new_item.replace("out_layers.0", "norm2")
        new_item = new_item.replace("out_layers.3", "conv2")

        new_item = new_item.replace("emb_layers.1", "time_emb_proj")
        new_item = new_item.replace("skip_connection", "conv_shortcut")

        new_item = shave_segments(new_item, n_shave_prefix_segments=n_shave_prefix_segments)

        mapping.append({"old": old_item, "new": new_item})

    return mapping


def renew_attention_paths(old_list, n_shave_prefix_segments=0):
    """
    Updates paths inside attentions to the new naming scheme (local renaming)
    """
    mapping = []
    for old_item in old_list:
        new_item = old_item

        new_item = new_item.replace("norm.weight", "group_norm.weight")
        new_item = new_item.replace("norm.bias", "group_norm.bias")

        new_item = new_item.replace("proj_out.weight", "proj_attn.weight")
        new_item = new_item.replace("proj_out.bias", "proj_attn.bias")

        new_item = shave_segments(new_item, n_shave_prefix_segments=n_shave_prefix_segments)

        mapping.append({"old": old_item, "new": new_item})

    return mapping


def assign_to_checkpoint(
    paths, checkpoint, old_checkpoint, attention_paths_to_split=None, additional_replacements=None, config=None
):
    """
    This does the final conversion step: take locally converted weights and apply a global renaming
    to them. It splits attention layers, and takes into account additional replacements
    that may arise.

    Assigns the weights to the new checkpoint.
    """
    assert isinstance(paths, list), "Paths should be a list of dicts containing 'old' and 'new' keys."

    # Splits the attention layers into three variables.
    if attention_paths_to_split is not None:
        for path, path_map in attention_paths_to_split.items():
            old_tensor = old_checkpoint[path]
            channels = old_tensor.shape[0] // 3

            target_shape = (-1, channels) if len(old_tensor.shape) == 3 else (-1)

            num_heads = old_tensor.shape[0] // config["num_head_channels"] // 3

            old_tensor = old_tensor.reshape((num_heads, 3 * channels // num_heads) + old_tensor.shape[1:])
            query, key, value = old_tensor.split(channels // num_heads, dim=1)

            checkpoint[path_map["query"]] = query.reshape(target_shape)
            checkpoint[path_map["key"]] = key.reshape(target_shape)
            checkpoint[path_map["value"]] = value.reshape(target_shape)

    for path in paths:
        new_path = path["new"]

        # These have already been assigned
        if attention_paths_to_split is not None and new_path in attention_paths_to_split:
            continue

        # Global renaming happens here
        new_path = new_path.replace("middle_block.0", "mid_block.resnets.0")
        new_path = new_path.replace("middle_block.1", "mid_block.attentions.0")
        new_path = new_path.replace("middle_block.2", "mid_block.resnets.1")

        if additional_replacements is not None:
            for replacement in additional_replacements:
                new_path = new_path.replace(replacement["old"], replacement["new"])

        # proj_attn.weight has to be converted from conv 1D to linear
        if "proj_attn.weight" in new_path:
            checkpoint[new_path] = old_checkpoint[path["old"]][:, :, 0]
        else:
            checkpoint[new_path] = old_checkpoint[path["old"]]


def convert_ldm_checkpoint(checkpoint, config):
    """
    Takes a state dict and a config, and returns a converted checkpoint.
    """
    new_checkpoint = {}

    new_checkpoint["time_embedding.linear_1.weight"] = checkpoint["time_embed.0.weight"]
    new_checkpoint["time_embedding.linear_1.bias"] = checkpoint["time_embed.0.bias"]
    new_checkpoint["time_embedding.linear_2.weight"] = checkpoint["time_embed.2.weight"]
    new_checkpoint["time_embedding.linear_2.bias"] = checkpoint["time_embed.2.bias"]

    new_checkpoint["conv_in.weight"] = checkpoint["input_blocks.0.0.weight"]
    new_checkpoint["conv_in.bias"] = checkpoint["input_blocks.0.0.bias"]

    new_checkpoint["conv_norm_out.weight"] = checkpoint["out.0.weight"]
    new_checkpoint["conv_norm_out.bias"] = checkpoint["out.0.bias"]
    new_checkpoint["conv_out.weight"] = checkpoint["out.2.weight"]
    new_checkpoint["conv_out.bias"] = checkpoint["out.2.bias"]

    # Retrieves the keys for the input blocks only
    num_input_blocks = len({".".join(layer.split(".")[:2]) for layer in checkpoint if "input_blocks" in layer})
    input_blocks = {
        layer_id: [key for key in checkpoint if f"input_blocks.{layer_id}" in key]
        for layer_id in range(num_input_blocks)
    }

    # Retrieves the keys for the middle blocks only
    num_middle_blocks = len({".".join(layer.split(".")[:2]) for layer in checkpoint if "middle_block" in layer})
    middle_blocks = {
        layer_id: [key for key in checkpoint if f"middle_block.{layer_id}" in key]
        for layer_id in range(num_middle_blocks)
    }

    # Retrieves the keys for the output blocks only
    num_output_blocks = len({".".join(layer.split(".")[:2]) for layer in checkpoint if "output_blocks" in layer})
    output_blocks = {
        layer_id: [key for key in checkpoint if f"output_blocks.{layer_id}" in key]
        for layer_id in range(num_output_blocks)
    }

    for i in range(1, num_input_blocks):
        block_id = (i - 1) // (config["num_res_blocks"] + 1)
        layer_in_block_id = (i - 1) % (config["num_res_blocks"] + 1)

        resnets = [key for key in input_blocks[i] if f"input_blocks.{i}.0" in key]
        attentions = [key for key in input_blocks[i] if f"input_blocks.{i}.1" in key]

        if f"input_blocks.{i}.0.op.weight" in checkpoint:
            new_checkpoint[f"down_blocks.{block_id}.downsamplers.0.conv.weight"] = checkpoint[
                f"input_blocks.{i}.0.op.weight"
            ]
            new_checkpoint[f"down_blocks.{block_id}.downsamplers.0.conv.bias"] = checkpoint[
                f"input_blocks.{i}.0.op.bias"
            ]
            continue

        paths = renew_resnet_paths(resnets)
        meta_path = {"old": f"input_blocks.{i}.0", "new": f"down_blocks.{block_id}.resnets.{layer_in_block_id}"}
        resnet_op = {"old": "resnets.2.op", "new": "downsamplers.0.op"}
        assign_to_checkpoint(
            paths, new_checkpoint, checkpoint, additional_replacements=[meta_path, resnet_op], config=config
        )

        if len(attentions):
            paths = renew_attention_paths(attentions)
            meta_path = {
                "old": f"input_blocks.{i}.1",
                "new": f"down_blocks.{block_id}.attentions.{layer_in_block_id}",
            }
            to_split = {
                f"input_blocks.{i}.1.qkv.bias": {
                    "key": f"down_blocks.{block_id}.attentions.{layer_in_block_id}.key.bias",
                    "query": f"down_blocks.{block_id}.attentions.{layer_in_block_id}.query.bias",
                    "value": f"down_blocks.{block_id}.attentions.{layer_in_block_id}.value.bias",
                },
                f"input_blocks.{i}.1.qkv.weight": {
                    "key": f"down_blocks.{block_id}.attentions.{layer_in_block_id}.key.weight",
                    "query": f"down_blocks.{block_id}.attentions.{layer_in_block_id}.query.weight",
                    "value": f"down_blocks.{block_id}.attentions.{layer_in_block_id}.value.weight",
                },
            }
            assign_to_checkpoint(
                paths,
                new_checkpoint,
                checkpoint,
                additional_replacements=[meta_path],
                attention_paths_to_split=to_split,
                config=config,
            )

    resnet_0 = middle_blocks[0]
    attentions = middle_blocks[1]
    resnet_1 = middle_blocks[2]

    resnet_0_paths = renew_resnet_paths(resnet_0)
    assign_to_checkpoint(resnet_0_paths, new_checkpoint, checkpoint, config=config)

    resnet_1_paths = renew_resnet_paths(resnet_1)
    assign_to_checkpoint(resnet_1_paths, new_checkpoint, checkpoint, config=config)

    attentions_paths = renew_attention_paths(attentions)
    to_split = {
        "middle_block.1.qkv.bias": {
            "key": "mid_block.attentions.0.key.bias",
            "query": "mid_block.attentions.0.query.bias",
            "value": "mid_block.attentions.0.value.bias",
        },
        "middle_block.1.qkv.weight": {
            "key": "mid_block.attentions.0.key.weight",
            "query": "mid_block.attentions.0.query.weight",
            "value": "mid_block.attentions.0.value.weight",
        },
    }
    assign_to_checkpoint(
        attentions_paths, new_checkpoint, checkpoint, attention_paths_to_split=to_split, config=config
    )

    for i in range(num_output_blocks):
        block_id = i // (config["num_res_blocks"] + 1)
        layer_in_block_id = i % (config["num_res_blocks"] + 1)
        output_block_layers = [shave_segments(name, 2) for name in output_blocks[i]]
        output_block_list = {}

        for layer in output_block_layers:
            layer_id, layer_name = layer.split(".")[0], shave_segments(layer, 1)
            if layer_id in output_block_list:
                output_block_list[layer_id].append(layer_name)
            else:
                output_block_list[layer_id] = [layer_name]

        if len(output_block_list) > 1:
            resnets = [key for key in output_blocks[i] if f"output_blocks.{i}.0" in key]
            attentions = [key for key in output_blocks[i] if f"output_blocks.{i}.1" in key]

            resnet_0_paths = renew_resnet_paths(resnets)
            paths = renew_resnet_paths(resnets)

            meta_path = {"old": f"output_blocks.{i}.0", "new": f"up_blocks.{block_id}.resnets.{layer_in_block_id}"}
            assign_to_checkpoint(paths, new_checkpoint, checkpoint, additional_replacements=[meta_path], config=config)

            if ["conv.weight", "conv.bias"] in output_block_list.values():
                index = list(output_block_list.values()).index(["conv.weight", "conv.bias"])
                new_checkpoint[f"up_blocks.{block_id}.upsamplers.0.conv.weight"] = checkpoint[
                    f"output_blocks.{i}.{index}.conv.weight"
                ]
                new_checkpoint[f"up_blocks.{block_id}.upsamplers.0.conv.bias"] = checkpoint[
                    f"output_blocks.{i}.{index}.conv.bias"
                ]

                # Clear attentions as they have been attributed above.
                if len(attentions) == 2:
                    attentions = []

            if len(attentions):
                paths = renew_attention_paths(attentions)
                meta_path = {
                    "old": f"output_blocks.{i}.1",
                    "new": f"up_blocks.{block_id}.attentions.{layer_in_block_id}",
                }
                to_split = {
                    f"output_blocks.{i}.1.qkv.bias": {
                        "key": f"up_blocks.{block_id}.attentions.{layer_in_block_id}.key.bias",
                        "query": f"up_blocks.{block_id}.attentions.{layer_in_block_id}.query.bias",
                        "value": f"up_blocks.{block_id}.attentions.{layer_in_block_id}.value.bias",
                    },
                    f"output_blocks.{i}.1.qkv.weight": {
                        "key": f"up_blocks.{block_id}.attentions.{layer_in_block_id}.key.weight",
                        "query": f"up_blocks.{block_id}.attentions.{layer_in_block_id}.query.weight",
                        "value": f"up_blocks.{block_id}.attentions.{layer_in_block_id}.value.weight",
                    },
                }
                assign_to_checkpoint(
                    paths,
                    new_checkpoint,
                    checkpoint,
                    additional_replacements=[meta_path],
                    attention_paths_to_split=to_split if any("qkv" in key for key in attentions) else None,
                    config=config,
                )
        else:
            resnet_0_paths = renew_resnet_paths(output_block_layers, n_shave_prefix_segments=1)
            for path in resnet_0_paths:
                old_path = ".".join(["output_blocks", str(i), path["old"]])
                new_path = ".".join(["up_blocks", str(block_id), "resnets", str(layer_in_block_id), path["new"]])

                new_checkpoint[new_path] = checkpoint[old_path]

    return new_checkpoint


if __name__ == "__main__":
    parser = argparse.ArgumentParser()

    parser.add_argument(
        "--checkpoint_path", default=None, type=str, required=True, help="Path to the checkpoint to convert."
    )

    parser.add_argument(
        "--config_file",
        default=None,
        type=str,
        required=True,
        help="The config json file corresponding to the architecture.",
    )

    parser.add_argument("--dump_path", default=None, type=str, required=True, help="Path to the output model.")

    args = parser.parse_args()

    checkpoint = torch.load(args.checkpoint_path)

    with open(args.config_file) as f:
        config = json.loads(f.read())

    converted_checkpoint = convert_ldm_checkpoint(checkpoint, config)

    if "ldm" in config:
        del config["ldm"]

    model = UNet2DModel(**config)
    model.load_state_dict(converted_checkpoint)

    try:
        scheduler = DDPMScheduler.from_config("/".join(args.checkpoint_path.split("/")[:-1]))
        vqvae = VQModel.from_pretrained("/".join(args.checkpoint_path.split("/")[:-1]))

        pipe = LDMPipeline(unet=model, scheduler=scheduler, vae=vqvae)
        pipe.save_pretrained(args.dump_path)
    except:  # noqa: E722
        model.save_pretrained(args.dump_path)