File size: 8,735 Bytes
f1069cc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
# coding=utf-8
# Copyright 2023 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Conversion script for the NCSNPP checkpoints. """

import argparse
import json

import torch

from diffusers import ScoreSdeVePipeline, ScoreSdeVeScheduler, UNet2DModel


def convert_ncsnpp_checkpoint(checkpoint, config):
    """
    Takes a state dict and the path to
    """
    new_model_architecture = UNet2DModel(**config)
    new_model_architecture.time_proj.W.data = checkpoint["all_modules.0.W"].data
    new_model_architecture.time_proj.weight.data = checkpoint["all_modules.0.W"].data
    new_model_architecture.time_embedding.linear_1.weight.data = checkpoint["all_modules.1.weight"].data
    new_model_architecture.time_embedding.linear_1.bias.data = checkpoint["all_modules.1.bias"].data

    new_model_architecture.time_embedding.linear_2.weight.data = checkpoint["all_modules.2.weight"].data
    new_model_architecture.time_embedding.linear_2.bias.data = checkpoint["all_modules.2.bias"].data

    new_model_architecture.conv_in.weight.data = checkpoint["all_modules.3.weight"].data
    new_model_architecture.conv_in.bias.data = checkpoint["all_modules.3.bias"].data

    new_model_architecture.conv_norm_out.weight.data = checkpoint[list(checkpoint.keys())[-4]].data
    new_model_architecture.conv_norm_out.bias.data = checkpoint[list(checkpoint.keys())[-3]].data
    new_model_architecture.conv_out.weight.data = checkpoint[list(checkpoint.keys())[-2]].data
    new_model_architecture.conv_out.bias.data = checkpoint[list(checkpoint.keys())[-1]].data

    module_index = 4

    def set_attention_weights(new_layer, old_checkpoint, index):
        new_layer.query.weight.data = old_checkpoint[f"all_modules.{index}.NIN_0.W"].data.T
        new_layer.key.weight.data = old_checkpoint[f"all_modules.{index}.NIN_1.W"].data.T
        new_layer.value.weight.data = old_checkpoint[f"all_modules.{index}.NIN_2.W"].data.T

        new_layer.query.bias.data = old_checkpoint[f"all_modules.{index}.NIN_0.b"].data
        new_layer.key.bias.data = old_checkpoint[f"all_modules.{index}.NIN_1.b"].data
        new_layer.value.bias.data = old_checkpoint[f"all_modules.{index}.NIN_2.b"].data

        new_layer.proj_attn.weight.data = old_checkpoint[f"all_modules.{index}.NIN_3.W"].data.T
        new_layer.proj_attn.bias.data = old_checkpoint[f"all_modules.{index}.NIN_3.b"].data

        new_layer.group_norm.weight.data = old_checkpoint[f"all_modules.{index}.GroupNorm_0.weight"].data
        new_layer.group_norm.bias.data = old_checkpoint[f"all_modules.{index}.GroupNorm_0.bias"].data

    def set_resnet_weights(new_layer, old_checkpoint, index):
        new_layer.conv1.weight.data = old_checkpoint[f"all_modules.{index}.Conv_0.weight"].data
        new_layer.conv1.bias.data = old_checkpoint[f"all_modules.{index}.Conv_0.bias"].data
        new_layer.norm1.weight.data = old_checkpoint[f"all_modules.{index}.GroupNorm_0.weight"].data
        new_layer.norm1.bias.data = old_checkpoint[f"all_modules.{index}.GroupNorm_0.bias"].data

        new_layer.conv2.weight.data = old_checkpoint[f"all_modules.{index}.Conv_1.weight"].data
        new_layer.conv2.bias.data = old_checkpoint[f"all_modules.{index}.Conv_1.bias"].data
        new_layer.norm2.weight.data = old_checkpoint[f"all_modules.{index}.GroupNorm_1.weight"].data
        new_layer.norm2.bias.data = old_checkpoint[f"all_modules.{index}.GroupNorm_1.bias"].data

        new_layer.time_emb_proj.weight.data = old_checkpoint[f"all_modules.{index}.Dense_0.weight"].data
        new_layer.time_emb_proj.bias.data = old_checkpoint[f"all_modules.{index}.Dense_0.bias"].data

        if new_layer.in_channels != new_layer.out_channels or new_layer.up or new_layer.down:
            new_layer.conv_shortcut.weight.data = old_checkpoint[f"all_modules.{index}.Conv_2.weight"].data
            new_layer.conv_shortcut.bias.data = old_checkpoint[f"all_modules.{index}.Conv_2.bias"].data

    for i, block in enumerate(new_model_architecture.downsample_blocks):
        has_attentions = hasattr(block, "attentions")
        for j in range(len(block.resnets)):
            set_resnet_weights(block.resnets[j], checkpoint, module_index)
            module_index += 1
            if has_attentions:
                set_attention_weights(block.attentions[j], checkpoint, module_index)
                module_index += 1

        if hasattr(block, "downsamplers") and block.downsamplers is not None:
            set_resnet_weights(block.resnet_down, checkpoint, module_index)
            module_index += 1
            block.skip_conv.weight.data = checkpoint[f"all_modules.{module_index}.Conv_0.weight"].data
            block.skip_conv.bias.data = checkpoint[f"all_modules.{module_index}.Conv_0.bias"].data
            module_index += 1

    set_resnet_weights(new_model_architecture.mid_block.resnets[0], checkpoint, module_index)
    module_index += 1
    set_attention_weights(new_model_architecture.mid_block.attentions[0], checkpoint, module_index)
    module_index += 1
    set_resnet_weights(new_model_architecture.mid_block.resnets[1], checkpoint, module_index)
    module_index += 1

    for i, block in enumerate(new_model_architecture.up_blocks):
        has_attentions = hasattr(block, "attentions")
        for j in range(len(block.resnets)):
            set_resnet_weights(block.resnets[j], checkpoint, module_index)
            module_index += 1
        if has_attentions:
            set_attention_weights(
                block.attentions[0], checkpoint, module_index
            )  # why can there only be a single attention layer for up?
            module_index += 1

        if hasattr(block, "resnet_up") and block.resnet_up is not None:
            block.skip_norm.weight.data = checkpoint[f"all_modules.{module_index}.weight"].data
            block.skip_norm.bias.data = checkpoint[f"all_modules.{module_index}.bias"].data
            module_index += 1
            block.skip_conv.weight.data = checkpoint[f"all_modules.{module_index}.weight"].data
            block.skip_conv.bias.data = checkpoint[f"all_modules.{module_index}.bias"].data
            module_index += 1
            set_resnet_weights(block.resnet_up, checkpoint, module_index)
            module_index += 1

    new_model_architecture.conv_norm_out.weight.data = checkpoint[f"all_modules.{module_index}.weight"].data
    new_model_architecture.conv_norm_out.bias.data = checkpoint[f"all_modules.{module_index}.bias"].data
    module_index += 1
    new_model_architecture.conv_out.weight.data = checkpoint[f"all_modules.{module_index}.weight"].data
    new_model_architecture.conv_out.bias.data = checkpoint[f"all_modules.{module_index}.bias"].data

    return new_model_architecture.state_dict()


if __name__ == "__main__":
    parser = argparse.ArgumentParser()

    parser.add_argument(
        "--checkpoint_path",
        default="/Users/arthurzucker/Work/diffusers/ArthurZ/diffusion_pytorch_model.bin",
        type=str,
        required=False,
        help="Path to the checkpoint to convert.",
    )

    parser.add_argument(
        "--config_file",
        default="/Users/arthurzucker/Work/diffusers/ArthurZ/config.json",
        type=str,
        required=False,
        help="The config json file corresponding to the architecture.",
    )

    parser.add_argument(
        "--dump_path",
        default="/Users/arthurzucker/Work/diffusers/ArthurZ/diffusion_model_new.pt",
        type=str,
        required=False,
        help="Path to the output model.",
    )

    args = parser.parse_args()

    checkpoint = torch.load(args.checkpoint_path, map_location="cpu")

    with open(args.config_file) as f:
        config = json.loads(f.read())

    converted_checkpoint = convert_ncsnpp_checkpoint(
        checkpoint,
        config,
    )

    if "sde" in config:
        del config["sde"]

    model = UNet2DModel(**config)
    model.load_state_dict(converted_checkpoint)

    try:
        scheduler = ScoreSdeVeScheduler.from_config("/".join(args.checkpoint_path.split("/")[:-1]))

        pipe = ScoreSdeVePipeline(unet=model, scheduler=scheduler)
        pipe.save_pretrained(args.dump_path)
    except:  # noqa: E722
        model.save_pretrained(args.dump_path)