Spaces:
Sleeping
Sleeping
"""SAMPLING ONLY.""" | |
import torch | |
import numpy as np | |
from tqdm import tqdm | |
from audioldm.latent_diffusion.util import ( | |
make_ddim_sampling_parameters, | |
make_ddim_timesteps, | |
noise_like, | |
extract_into_tensor, | |
) | |
class DDIMSampler(object): | |
def __init__(self, model, schedule="linear", **kwargs): | |
super().__init__() | |
self.model = model | |
self.ddpm_num_timesteps = model.num_timesteps | |
self.schedule = schedule | |
def register_buffer(self, name, attr): | |
if type(attr) == torch.Tensor: | |
if attr.device != torch.device("cuda"): | |
attr = attr.to(torch.device("cuda")) | |
setattr(self, name, attr) | |
def make_schedule( | |
self, ddim_num_steps, ddim_discretize="uniform", ddim_eta=0.0, verbose=True | |
): | |
self.ddim_timesteps = make_ddim_timesteps( | |
ddim_discr_method=ddim_discretize, | |
num_ddim_timesteps=ddim_num_steps, | |
num_ddpm_timesteps=self.ddpm_num_timesteps, | |
verbose=verbose, | |
) | |
alphas_cumprod = self.model.alphas_cumprod | |
assert ( | |
alphas_cumprod.shape[0] == self.ddpm_num_timesteps | |
), "alphas have to be defined for each timestep" | |
to_torch = lambda x: x.clone().detach().to(torch.float32).to(self.model.device) | |
self.register_buffer("betas", to_torch(self.model.betas)) | |
self.register_buffer("alphas_cumprod", to_torch(alphas_cumprod)) | |
self.register_buffer( | |
"alphas_cumprod_prev", to_torch(self.model.alphas_cumprod_prev) | |
) | |
# calculations for diffusion q(x_t | x_{t-1}) and others | |
self.register_buffer( | |
"sqrt_alphas_cumprod", to_torch(np.sqrt(alphas_cumprod.cpu())) | |
) | |
self.register_buffer( | |
"sqrt_one_minus_alphas_cumprod", | |
to_torch(np.sqrt(1.0 - alphas_cumprod.cpu())), | |
) | |
self.register_buffer( | |
"log_one_minus_alphas_cumprod", to_torch(np.log(1.0 - alphas_cumprod.cpu())) | |
) | |
self.register_buffer( | |
"sqrt_recip_alphas_cumprod", to_torch(np.sqrt(1.0 / alphas_cumprod.cpu())) | |
) | |
self.register_buffer( | |
"sqrt_recipm1_alphas_cumprod", | |
to_torch(np.sqrt(1.0 / alphas_cumprod.cpu() - 1)), | |
) | |
# ddim sampling parameters | |
ddim_sigmas, ddim_alphas, ddim_alphas_prev = make_ddim_sampling_parameters( | |
alphacums=alphas_cumprod.cpu(), | |
ddim_timesteps=self.ddim_timesteps, | |
eta=ddim_eta, | |
verbose=verbose, | |
) | |
self.register_buffer("ddim_sigmas", ddim_sigmas) | |
self.register_buffer("ddim_alphas", ddim_alphas) | |
self.register_buffer("ddim_alphas_prev", ddim_alphas_prev) | |
self.register_buffer("ddim_sqrt_one_minus_alphas", np.sqrt(1.0 - ddim_alphas)) | |
sigmas_for_original_sampling_steps = ddim_eta * torch.sqrt( | |
(1 - self.alphas_cumprod_prev) | |
/ (1 - self.alphas_cumprod) | |
* (1 - self.alphas_cumprod / self.alphas_cumprod_prev) | |
) | |
self.register_buffer( | |
"ddim_sigmas_for_original_num_steps", sigmas_for_original_sampling_steps | |
) | |
def sample( | |
self, | |
S, | |
batch_size, | |
shape, | |
conditioning=None, | |
callback=None, | |
normals_sequence=None, | |
img_callback=None, | |
quantize_x0=False, | |
eta=0.0, | |
mask=None, | |
x0=None, | |
temperature=1.0, | |
noise_dropout=0.0, | |
score_corrector=None, | |
corrector_kwargs=None, | |
verbose=True, | |
x_T=None, | |
log_every_t=100, | |
unconditional_guidance_scale=1.0, | |
unconditional_conditioning=None, | |
# this has to come in the same format as the conditioning, # e.g. as encoded tokens, ... | |
**kwargs, | |
): | |
if conditioning is not None: | |
if isinstance(conditioning, dict): | |
cbs = conditioning[list(conditioning.keys())[0]].shape[0] | |
if cbs != batch_size: | |
print( | |
f"Warning: Got {cbs} conditionings but batch-size is {batch_size}" | |
) | |
else: | |
if conditioning.shape[0] != batch_size: | |
print( | |
f"Warning: Got {conditioning.shape[0]} conditionings but batch-size is {batch_size}" | |
) | |
self.make_schedule(ddim_num_steps=S, ddim_eta=eta, verbose=verbose) | |
# sampling | |
C, H, W = shape | |
size = (batch_size, C, H, W) | |
samples, intermediates = self.ddim_sampling( | |
conditioning, | |
size, | |
callback=callback, | |
img_callback=img_callback, | |
quantize_denoised=quantize_x0, | |
mask=mask, | |
x0=x0, | |
ddim_use_original_steps=False, | |
noise_dropout=noise_dropout, | |
temperature=temperature, | |
score_corrector=score_corrector, | |
corrector_kwargs=corrector_kwargs, | |
x_T=x_T, | |
log_every_t=log_every_t, | |
unconditional_guidance_scale=unconditional_guidance_scale, | |
unconditional_conditioning=unconditional_conditioning, | |
) | |
return samples, intermediates | |
def ddim_sampling( | |
self, | |
cond, | |
shape, | |
x_T=None, | |
ddim_use_original_steps=False, | |
callback=None, | |
timesteps=None, | |
quantize_denoised=False, | |
mask=None, | |
x0=None, | |
img_callback=None, | |
log_every_t=100, | |
temperature=1.0, | |
noise_dropout=0.0, | |
score_corrector=None, | |
corrector_kwargs=None, | |
unconditional_guidance_scale=1.0, | |
unconditional_conditioning=None, | |
): | |
device = self.model.betas.device | |
b = shape[0] | |
if x_T is None: | |
img = torch.randn(shape, device=device) | |
else: | |
img = x_T | |
if timesteps is None: | |
timesteps = ( | |
self.ddpm_num_timesteps | |
if ddim_use_original_steps | |
else self.ddim_timesteps | |
) | |
elif timesteps is not None and not ddim_use_original_steps: | |
subset_end = ( | |
int( | |
min(timesteps / self.ddim_timesteps.shape[0], 1) | |
* self.ddim_timesteps.shape[0] | |
) | |
- 1 | |
) | |
timesteps = self.ddim_timesteps[:subset_end] | |
intermediates = {"x_inter": [img], "pred_x0": [img]} | |
time_range = ( | |
reversed(range(0, timesteps)) | |
if ddim_use_original_steps | |
else np.flip(timesteps) | |
) | |
total_steps = timesteps if ddim_use_original_steps else timesteps.shape[0] | |
# print(f"Running DDIM Sampling with {total_steps} timesteps") | |
# iterator = gr.Progress().tqdm(time_range, desc="DDIM Sampler", total=total_steps) | |
iterator = tqdm(time_range, desc="DDIM Sampler", total=total_steps, leave=False) | |
for i, step in enumerate(iterator): | |
index = total_steps - i - 1 | |
ts = torch.full((b,), step, device=device, dtype=torch.long) | |
if mask is not None: | |
assert x0 is not None | |
img_orig = self.model.q_sample( | |
x0, ts | |
) # TODO deterministic forward pass? | |
img = ( | |
img_orig * mask + (1.0 - mask) * img | |
) # In the first sampling step, img is pure gaussian noise | |
outs = self.p_sample_ddim( | |
img, | |
cond, | |
ts, | |
index=index, | |
use_original_steps=ddim_use_original_steps, | |
quantize_denoised=quantize_denoised, | |
temperature=temperature, | |
noise_dropout=noise_dropout, | |
score_corrector=score_corrector, | |
corrector_kwargs=corrector_kwargs, | |
unconditional_guidance_scale=unconditional_guidance_scale, | |
unconditional_conditioning=unconditional_conditioning, | |
) | |
img, pred_x0 = outs | |
if callback: | |
callback(i) | |
if img_callback: | |
img_callback(pred_x0, i) | |
if index % log_every_t == 0 or index == total_steps - 1: | |
intermediates["x_inter"].append(img) | |
intermediates["pred_x0"].append(pred_x0) | |
return img, intermediates | |
def stochastic_encode(self, x0, t, use_original_steps=False, noise=None): | |
# fast, but does not allow for exact reconstruction | |
# t serves as an index to gather the correct alphas | |
if use_original_steps: | |
sqrt_alphas_cumprod = self.sqrt_alphas_cumprod | |
sqrt_one_minus_alphas_cumprod = self.sqrt_one_minus_alphas_cumprod | |
else: | |
sqrt_alphas_cumprod = torch.sqrt(self.ddim_alphas) | |
sqrt_one_minus_alphas_cumprod = self.ddim_sqrt_one_minus_alphas | |
if noise is None: | |
noise = torch.randn_like(x0) | |
return ( | |
extract_into_tensor(sqrt_alphas_cumprod, t, x0.shape) * x0 | |
+ extract_into_tensor(sqrt_one_minus_alphas_cumprod, t, x0.shape) * noise | |
) | |
def decode( | |
self, | |
x_latent, | |
cond, | |
t_start, | |
unconditional_guidance_scale=1.0, | |
unconditional_conditioning=None, | |
use_original_steps=False, | |
): | |
timesteps = ( | |
np.arange(self.ddpm_num_timesteps) | |
if use_original_steps | |
else self.ddim_timesteps | |
) | |
timesteps = timesteps[:t_start] | |
time_range = np.flip(timesteps) | |
total_steps = timesteps.shape[0] | |
# print(f"Running DDIM Sampling with {total_steps} timesteps") | |
# iterator = gr.Progress().tqdm(time_range, desc="Decoding image", total=total_steps) | |
iterator = tqdm(time_range, desc="Decoding image", total=total_steps) | |
x_dec = x_latent | |
for i, step in enumerate(iterator): | |
index = total_steps - i - 1 | |
ts = torch.full( | |
(x_latent.shape[0],), step, device=x_latent.device, dtype=torch.long | |
) | |
x_dec, _ = self.p_sample_ddim( | |
x_dec, | |
cond, | |
ts, | |
index=index, | |
use_original_steps=use_original_steps, | |
unconditional_guidance_scale=unconditional_guidance_scale, | |
unconditional_conditioning=unconditional_conditioning, | |
) | |
return x_dec | |
def p_sample_ddim( | |
self, | |
x, | |
c, | |
t, | |
index, | |
repeat_noise=False, | |
use_original_steps=False, | |
quantize_denoised=False, | |
temperature=1.0, | |
noise_dropout=0.0, | |
score_corrector=None, | |
corrector_kwargs=None, | |
unconditional_guidance_scale=1.0, | |
unconditional_conditioning=None, | |
): | |
b, *_, device = *x.shape, x.device | |
if unconditional_conditioning is None or unconditional_guidance_scale == 1.0: | |
e_t = self.model.apply_model(x, t, c) | |
else: | |
x_in = torch.cat([x] * 2) | |
t_in = torch.cat([t] * 2) | |
c_in = torch.cat([unconditional_conditioning, c]) | |
e_t_uncond, e_t = self.model.apply_model(x_in, t_in, c_in).chunk(2) | |
# When unconditional_guidance_scale == 1: only e_t | |
# When unconditional_guidance_scale == 0: only unconditional | |
# When unconditional_guidance_scale > 1: add more unconditional guidance | |
e_t = e_t_uncond + unconditional_guidance_scale * (e_t - e_t_uncond) | |
if score_corrector is not None: | |
assert self.model.parameterization == "eps" | |
e_t = score_corrector.modify_score( | |
self.model, e_t, x, t, c, **corrector_kwargs | |
) | |
alphas = self.model.alphas_cumprod if use_original_steps else self.ddim_alphas | |
alphas_prev = ( | |
self.model.alphas_cumprod_prev | |
if use_original_steps | |
else self.ddim_alphas_prev | |
) | |
sqrt_one_minus_alphas = ( | |
self.model.sqrt_one_minus_alphas_cumprod | |
if use_original_steps | |
else self.ddim_sqrt_one_minus_alphas | |
) | |
sigmas = ( | |
self.model.ddim_sigmas_for_original_num_steps | |
if use_original_steps | |
else self.ddim_sigmas | |
) | |
# select parameters corresponding to the currently considered timestep | |
a_t = torch.full((b, 1, 1, 1), alphas[index], device=device) | |
a_prev = torch.full((b, 1, 1, 1), alphas_prev[index], device=device) | |
sigma_t = torch.full((b, 1, 1, 1), sigmas[index], device=device) | |
sqrt_one_minus_at = torch.full( | |
(b, 1, 1, 1), sqrt_one_minus_alphas[index], device=device | |
) | |
# current prediction for x_0 | |
pred_x0 = (x - sqrt_one_minus_at * e_t) / a_t.sqrt() | |
if quantize_denoised: | |
pred_x0, _, *_ = self.model.first_stage_model.quantize(pred_x0) | |
# direction pointing to x_t | |
dir_xt = (1.0 - a_prev - sigma_t**2).sqrt() * e_t | |
noise = sigma_t * noise_like(x.shape, device, repeat_noise) * temperature | |
if noise_dropout > 0.0: | |
noise = torch.nn.functional.dropout(noise, p=noise_dropout) | |
x_prev = a_prev.sqrt() * pred_x0 + dir_xt + noise # TODO | |
return x_prev, pred_x0 | |