Spaces:
Running
on
A10G
Running
on
A10G
# coding=utf-8 | |
# Copyright 2023 HuggingFace Inc. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import unittest | |
import numpy as np | |
import torch | |
from transformers import CLIPTextConfig, CLIPTextModel | |
from diffusers import DDIMScheduler, LDMPipeline, UNet2DModel, VQModel | |
from diffusers.utils.testing_utils import require_torch, slow, torch_device | |
torch.backends.cuda.matmul.allow_tf32 = False | |
class LDMPipelineFastTests(unittest.TestCase): | |
def dummy_uncond_unet(self): | |
torch.manual_seed(0) | |
model = UNet2DModel( | |
block_out_channels=(32, 64), | |
layers_per_block=2, | |
sample_size=32, | |
in_channels=3, | |
out_channels=3, | |
down_block_types=("DownBlock2D", "AttnDownBlock2D"), | |
up_block_types=("AttnUpBlock2D", "UpBlock2D"), | |
) | |
return model | |
def dummy_vq_model(self): | |
torch.manual_seed(0) | |
model = VQModel( | |
block_out_channels=[32, 64], | |
in_channels=3, | |
out_channels=3, | |
down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"], | |
up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"], | |
latent_channels=3, | |
) | |
return model | |
def dummy_text_encoder(self): | |
torch.manual_seed(0) | |
config = CLIPTextConfig( | |
bos_token_id=0, | |
eos_token_id=2, | |
hidden_size=32, | |
intermediate_size=37, | |
layer_norm_eps=1e-05, | |
num_attention_heads=4, | |
num_hidden_layers=5, | |
pad_token_id=1, | |
vocab_size=1000, | |
) | |
return CLIPTextModel(config) | |
def test_inference_uncond(self): | |
unet = self.dummy_uncond_unet | |
scheduler = DDIMScheduler() | |
vae = self.dummy_vq_model | |
ldm = LDMPipeline(unet=unet, vqvae=vae, scheduler=scheduler) | |
ldm.to(torch_device) | |
ldm.set_progress_bar_config(disable=None) | |
generator = torch.manual_seed(0) | |
image = ldm(generator=generator, num_inference_steps=2, output_type="numpy").images | |
generator = torch.manual_seed(0) | |
image_from_tuple = ldm(generator=generator, num_inference_steps=2, output_type="numpy", return_dict=False)[0] | |
image_slice = image[0, -3:, -3:, -1] | |
image_from_tuple_slice = image_from_tuple[0, -3:, -3:, -1] | |
assert image.shape == (1, 64, 64, 3) | |
expected_slice = np.array([0.8512, 0.818, 0.6411, 0.6808, 0.4465, 0.5618, 0.46, 0.6231, 0.5172]) | |
tolerance = 1e-2 if torch_device != "mps" else 3e-2 | |
assert np.abs(image_slice.flatten() - expected_slice).max() < tolerance | |
assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < tolerance | |
class LDMPipelineIntegrationTests(unittest.TestCase): | |
def test_inference_uncond(self): | |
ldm = LDMPipeline.from_pretrained("CompVis/ldm-celebahq-256") | |
ldm.to(torch_device) | |
ldm.set_progress_bar_config(disable=None) | |
generator = torch.manual_seed(0) | |
image = ldm(generator=generator, num_inference_steps=5, output_type="numpy").images | |
image_slice = image[0, -3:, -3:, -1] | |
assert image.shape == (1, 256, 256, 3) | |
expected_slice = np.array([0.4399, 0.44975, 0.46825, 0.474, 0.4359, 0.4581, 0.45095, 0.4341, 0.4447]) | |
tolerance = 1e-2 if torch_device != "mps" else 3e-2 | |
assert np.abs(image_slice.flatten() - expected_slice).max() < tolerance | |