Spaces:
Running
on
A10G
Running
on
A10G
import argparse | |
from transformers import CLIPImageProcessor, CLIPVisionModelWithProjection | |
from diffusers import UnCLIPImageVariationPipeline, UnCLIPPipeline | |
if __name__ == "__main__": | |
parser = argparse.ArgumentParser() | |
parser.add_argument("--dump_path", default=None, type=str, required=True, help="Path to the output model.") | |
parser.add_argument( | |
"--txt2img_unclip", | |
default="kakaobrain/karlo-v1-alpha", | |
type=str, | |
required=False, | |
help="The pretrained txt2img unclip.", | |
) | |
args = parser.parse_args() | |
txt2img = UnCLIPPipeline.from_pretrained(args.txt2img_unclip) | |
feature_extractor = CLIPImageProcessor() | |
image_encoder = CLIPVisionModelWithProjection.from_pretrained("openai/clip-vit-large-patch14") | |
img2img = UnCLIPImageVariationPipeline( | |
decoder=txt2img.decoder, | |
text_encoder=txt2img.text_encoder, | |
tokenizer=txt2img.tokenizer, | |
text_proj=txt2img.text_proj, | |
feature_extractor=feature_extractor, | |
image_encoder=image_encoder, | |
super_res_first=txt2img.super_res_first, | |
super_res_last=txt2img.super_res_last, | |
decoder_scheduler=txt2img.decoder_scheduler, | |
super_res_scheduler=txt2img.super_res_scheduler, | |
) | |
img2img.save_pretrained(args.dump_path) | |