Spaces:
Running
on
A10G
Running
on
A10G
# coding=utf-8 | |
# Copyright 2023 HuggingFace Inc. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import gc | |
import random | |
import unittest | |
import numpy as np | |
import torch | |
from transformers import ( | |
CLIPImageProcessor, | |
CLIPTextConfig, | |
CLIPTextModelWithProjection, | |
CLIPTokenizer, | |
CLIPVisionConfig, | |
CLIPVisionModelWithProjection, | |
) | |
from diffusers import ( | |
DiffusionPipeline, | |
UnCLIPImageVariationPipeline, | |
UnCLIPScheduler, | |
UNet2DConditionModel, | |
UNet2DModel, | |
) | |
from diffusers.pipelines.unclip.text_proj import UnCLIPTextProjModel | |
from diffusers.utils import floats_tensor, load_numpy, slow, torch_device | |
from diffusers.utils.testing_utils import load_image, require_torch_gpu, skip_mps | |
from ...pipeline_params import IMAGE_VARIATION_BATCH_PARAMS, IMAGE_VARIATION_PARAMS | |
from ...test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference | |
class UnCLIPImageVariationPipelineFastTests(PipelineTesterMixin, unittest.TestCase): | |
pipeline_class = UnCLIPImageVariationPipeline | |
params = IMAGE_VARIATION_PARAMS - {"height", "width", "guidance_scale"} | |
batch_params = IMAGE_VARIATION_BATCH_PARAMS | |
required_optional_params = [ | |
"generator", | |
"return_dict", | |
"decoder_num_inference_steps", | |
"super_res_num_inference_steps", | |
] | |
def text_embedder_hidden_size(self): | |
return 32 | |
def time_input_dim(self): | |
return 32 | |
def block_out_channels_0(self): | |
return self.time_input_dim | |
def time_embed_dim(self): | |
return self.time_input_dim * 4 | |
def cross_attention_dim(self): | |
return 100 | |
def dummy_tokenizer(self): | |
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip") | |
return tokenizer | |
def dummy_text_encoder(self): | |
torch.manual_seed(0) | |
config = CLIPTextConfig( | |
bos_token_id=0, | |
eos_token_id=2, | |
hidden_size=self.text_embedder_hidden_size, | |
projection_dim=self.text_embedder_hidden_size, | |
intermediate_size=37, | |
layer_norm_eps=1e-05, | |
num_attention_heads=4, | |
num_hidden_layers=5, | |
pad_token_id=1, | |
vocab_size=1000, | |
) | |
return CLIPTextModelWithProjection(config) | |
def dummy_image_encoder(self): | |
torch.manual_seed(0) | |
config = CLIPVisionConfig( | |
hidden_size=self.text_embedder_hidden_size, | |
projection_dim=self.text_embedder_hidden_size, | |
num_hidden_layers=5, | |
num_attention_heads=4, | |
image_size=32, | |
intermediate_size=37, | |
patch_size=1, | |
) | |
return CLIPVisionModelWithProjection(config) | |
def dummy_text_proj(self): | |
torch.manual_seed(0) | |
model_kwargs = { | |
"clip_embeddings_dim": self.text_embedder_hidden_size, | |
"time_embed_dim": self.time_embed_dim, | |
"cross_attention_dim": self.cross_attention_dim, | |
} | |
model = UnCLIPTextProjModel(**model_kwargs) | |
return model | |
def dummy_decoder(self): | |
torch.manual_seed(0) | |
model_kwargs = { | |
"sample_size": 32, | |
# RGB in channels | |
"in_channels": 3, | |
# Out channels is double in channels because predicts mean and variance | |
"out_channels": 6, | |
"down_block_types": ("ResnetDownsampleBlock2D", "SimpleCrossAttnDownBlock2D"), | |
"up_block_types": ("SimpleCrossAttnUpBlock2D", "ResnetUpsampleBlock2D"), | |
"mid_block_type": "UNetMidBlock2DSimpleCrossAttn", | |
"block_out_channels": (self.block_out_channels_0, self.block_out_channels_0 * 2), | |
"layers_per_block": 1, | |
"cross_attention_dim": self.cross_attention_dim, | |
"attention_head_dim": 4, | |
"resnet_time_scale_shift": "scale_shift", | |
"class_embed_type": "identity", | |
} | |
model = UNet2DConditionModel(**model_kwargs) | |
return model | |
def dummy_super_res_kwargs(self): | |
return { | |
"sample_size": 64, | |
"layers_per_block": 1, | |
"down_block_types": ("ResnetDownsampleBlock2D", "ResnetDownsampleBlock2D"), | |
"up_block_types": ("ResnetUpsampleBlock2D", "ResnetUpsampleBlock2D"), | |
"block_out_channels": (self.block_out_channels_0, self.block_out_channels_0 * 2), | |
"in_channels": 6, | |
"out_channels": 3, | |
} | |
def dummy_super_res_first(self): | |
torch.manual_seed(0) | |
model = UNet2DModel(**self.dummy_super_res_kwargs) | |
return model | |
def dummy_super_res_last(self): | |
# seeded differently to get different unet than `self.dummy_super_res_first` | |
torch.manual_seed(1) | |
model = UNet2DModel(**self.dummy_super_res_kwargs) | |
return model | |
def get_dummy_components(self): | |
decoder = self.dummy_decoder | |
text_proj = self.dummy_text_proj | |
text_encoder = self.dummy_text_encoder | |
tokenizer = self.dummy_tokenizer | |
super_res_first = self.dummy_super_res_first | |
super_res_last = self.dummy_super_res_last | |
decoder_scheduler = UnCLIPScheduler( | |
variance_type="learned_range", | |
prediction_type="epsilon", | |
num_train_timesteps=1000, | |
) | |
super_res_scheduler = UnCLIPScheduler( | |
variance_type="fixed_small_log", | |
prediction_type="epsilon", | |
num_train_timesteps=1000, | |
) | |
feature_extractor = CLIPImageProcessor(crop_size=32, size=32) | |
image_encoder = self.dummy_image_encoder | |
return { | |
"decoder": decoder, | |
"text_encoder": text_encoder, | |
"tokenizer": tokenizer, | |
"text_proj": text_proj, | |
"feature_extractor": feature_extractor, | |
"image_encoder": image_encoder, | |
"super_res_first": super_res_first, | |
"super_res_last": super_res_last, | |
"decoder_scheduler": decoder_scheduler, | |
"super_res_scheduler": super_res_scheduler, | |
} | |
def get_dummy_inputs(self, device, seed=0, pil_image=True): | |
input_image = floats_tensor((1, 3, 32, 32), rng=random.Random(seed)).to(device) | |
if str(device).startswith("mps"): | |
generator = torch.manual_seed(seed) | |
else: | |
generator = torch.Generator(device=device).manual_seed(seed) | |
if pil_image: | |
input_image = input_image * 0.5 + 0.5 | |
input_image = input_image.clamp(0, 1) | |
input_image = input_image.cpu().permute(0, 2, 3, 1).float().numpy() | |
input_image = DiffusionPipeline.numpy_to_pil(input_image)[0] | |
return { | |
"image": input_image, | |
"generator": generator, | |
"decoder_num_inference_steps": 2, | |
"super_res_num_inference_steps": 2, | |
"output_type": "np", | |
} | |
def test_unclip_image_variation_input_tensor(self): | |
device = "cpu" | |
components = self.get_dummy_components() | |
pipe = self.pipeline_class(**components) | |
pipe = pipe.to(device) | |
pipe.set_progress_bar_config(disable=None) | |
pipeline_inputs = self.get_dummy_inputs(device, pil_image=False) | |
output = pipe(**pipeline_inputs) | |
image = output.images | |
tuple_pipeline_inputs = self.get_dummy_inputs(device, pil_image=False) | |
image_from_tuple = pipe( | |
**tuple_pipeline_inputs, | |
return_dict=False, | |
)[0] | |
image_slice = image[0, -3:, -3:, -1] | |
image_from_tuple_slice = image_from_tuple[0, -3:, -3:, -1] | |
assert image.shape == (1, 64, 64, 3) | |
expected_slice = np.array( | |
[ | |
0.9997, | |
0.0002, | |
0.9997, | |
0.9997, | |
0.9969, | |
0.0023, | |
0.9997, | |
0.9969, | |
0.9970, | |
] | |
) | |
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 | |
assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2 | |
def test_unclip_image_variation_input_image(self): | |
device = "cpu" | |
components = self.get_dummy_components() | |
pipe = self.pipeline_class(**components) | |
pipe = pipe.to(device) | |
pipe.set_progress_bar_config(disable=None) | |
pipeline_inputs = self.get_dummy_inputs(device, pil_image=True) | |
output = pipe(**pipeline_inputs) | |
image = output.images | |
tuple_pipeline_inputs = self.get_dummy_inputs(device, pil_image=True) | |
image_from_tuple = pipe( | |
**tuple_pipeline_inputs, | |
return_dict=False, | |
)[0] | |
image_slice = image[0, -3:, -3:, -1] | |
image_from_tuple_slice = image_from_tuple[0, -3:, -3:, -1] | |
assert image.shape == (1, 64, 64, 3) | |
expected_slice = np.array([0.9997, 0.0003, 0.9997, 0.9997, 0.9970, 0.0024, 0.9997, 0.9971, 0.9971]) | |
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 | |
assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2 | |
def test_unclip_image_variation_input_list_images(self): | |
device = "cpu" | |
components = self.get_dummy_components() | |
pipe = self.pipeline_class(**components) | |
pipe = pipe.to(device) | |
pipe.set_progress_bar_config(disable=None) | |
pipeline_inputs = self.get_dummy_inputs(device, pil_image=True) | |
pipeline_inputs["image"] = [ | |
pipeline_inputs["image"], | |
pipeline_inputs["image"], | |
] | |
output = pipe(**pipeline_inputs) | |
image = output.images | |
tuple_pipeline_inputs = self.get_dummy_inputs(device, pil_image=True) | |
tuple_pipeline_inputs["image"] = [ | |
tuple_pipeline_inputs["image"], | |
tuple_pipeline_inputs["image"], | |
] | |
image_from_tuple = pipe( | |
**tuple_pipeline_inputs, | |
return_dict=False, | |
)[0] | |
image_slice = image[0, -3:, -3:, -1] | |
image_from_tuple_slice = image_from_tuple[0, -3:, -3:, -1] | |
assert image.shape == (2, 64, 64, 3) | |
expected_slice = np.array( | |
[ | |
0.9997, | |
0.9989, | |
0.0008, | |
0.0021, | |
0.9960, | |
0.0018, | |
0.0014, | |
0.0002, | |
0.9933, | |
] | |
) | |
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 | |
assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2 | |
def test_unclip_passed_image_embed(self): | |
device = torch.device("cpu") | |
class DummyScheduler: | |
init_noise_sigma = 1 | |
components = self.get_dummy_components() | |
pipe = self.pipeline_class(**components) | |
pipe = pipe.to(device) | |
pipe.set_progress_bar_config(disable=None) | |
generator = torch.Generator(device=device).manual_seed(0) | |
dtype = pipe.decoder.dtype | |
batch_size = 1 | |
shape = (batch_size, pipe.decoder.in_channels, pipe.decoder.sample_size, pipe.decoder.sample_size) | |
decoder_latents = pipe.prepare_latents( | |
shape, dtype=dtype, device=device, generator=generator, latents=None, scheduler=DummyScheduler() | |
) | |
shape = ( | |
batch_size, | |
pipe.super_res_first.in_channels // 2, | |
pipe.super_res_first.sample_size, | |
pipe.super_res_first.sample_size, | |
) | |
super_res_latents = pipe.prepare_latents( | |
shape, dtype=dtype, device=device, generator=generator, latents=None, scheduler=DummyScheduler() | |
) | |
pipeline_inputs = self.get_dummy_inputs(device, pil_image=False) | |
img_out_1 = pipe( | |
**pipeline_inputs, decoder_latents=decoder_latents, super_res_latents=super_res_latents | |
).images | |
pipeline_inputs = self.get_dummy_inputs(device, pil_image=False) | |
# Don't pass image, instead pass embedding | |
image = pipeline_inputs.pop("image") | |
image_embeddings = pipe.image_encoder(image).image_embeds | |
img_out_2 = pipe( | |
**pipeline_inputs, | |
decoder_latents=decoder_latents, | |
super_res_latents=super_res_latents, | |
image_embeddings=image_embeddings, | |
).images | |
# make sure passing text embeddings manually is identical | |
assert np.abs(img_out_1 - img_out_2).max() < 1e-4 | |
# Overriding PipelineTesterMixin::test_attention_slicing_forward_pass | |
# because UnCLIP GPU undeterminism requires a looser check. | |
def test_attention_slicing_forward_pass(self): | |
test_max_difference = torch_device == "cpu" | |
self._test_attention_slicing_forward_pass(test_max_difference=test_max_difference) | |
# Overriding PipelineTesterMixin::test_inference_batch_single_identical | |
# because UnCLIP undeterminism requires a looser check. | |
def test_inference_batch_single_identical(self): | |
test_max_difference = torch_device == "cpu" | |
relax_max_difference = True | |
additional_params_copy_to_batched_inputs = [ | |
"decoder_num_inference_steps", | |
"super_res_num_inference_steps", | |
] | |
self._test_inference_batch_single_identical( | |
test_max_difference=test_max_difference, | |
relax_max_difference=relax_max_difference, | |
additional_params_copy_to_batched_inputs=additional_params_copy_to_batched_inputs, | |
) | |
def test_inference_batch_consistent(self): | |
additional_params_copy_to_batched_inputs = [ | |
"decoder_num_inference_steps", | |
"super_res_num_inference_steps", | |
] | |
if torch_device == "mps": | |
# TODO: MPS errors with larger batch sizes | |
batch_sizes = [2, 3] | |
self._test_inference_batch_consistent( | |
batch_sizes=batch_sizes, | |
additional_params_copy_to_batched_inputs=additional_params_copy_to_batched_inputs, | |
) | |
else: | |
self._test_inference_batch_consistent( | |
additional_params_copy_to_batched_inputs=additional_params_copy_to_batched_inputs | |
) | |
def test_dict_tuple_outputs_equivalent(self): | |
return super().test_dict_tuple_outputs_equivalent() | |
def test_save_load_local(self): | |
return super().test_save_load_local() | |
def test_save_load_optional_components(self): | |
return super().test_save_load_optional_components() | |
class UnCLIPImageVariationPipelineIntegrationTests(unittest.TestCase): | |
def tearDown(self): | |
# clean up the VRAM after each test | |
super().tearDown() | |
gc.collect() | |
torch.cuda.empty_cache() | |
def test_unclip_image_variation_karlo(self): | |
input_image = load_image( | |
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/unclip/cat.png" | |
) | |
expected_image = load_numpy( | |
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" | |
"/unclip/karlo_v1_alpha_cat_variation_fp16.npy" | |
) | |
pipeline = UnCLIPImageVariationPipeline.from_pretrained( | |
"kakaobrain/karlo-v1-alpha-image-variations", torch_dtype=torch.float16 | |
) | |
pipeline = pipeline.to(torch_device) | |
pipeline.set_progress_bar_config(disable=None) | |
generator = torch.Generator(device="cpu").manual_seed(0) | |
output = pipeline( | |
input_image, | |
generator=generator, | |
output_type="np", | |
) | |
image = output.images[0] | |
assert image.shape == (256, 256, 3) | |
assert_mean_pixel_difference(image, expected_image) | |