Spaces:
Runtime error
Runtime error
File size: 8,416 Bytes
fd43906 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 |
# coding=utf-8
# Copyright 2023 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import unittest
import numpy as np
import torch
from diffusers.models import ModelMixin, UNet3DConditionModel
from diffusers.models.attention_processor import LoRAAttnProcessor
from diffusers.utils import (
floats_tensor,
logging,
skip_mps,
torch_device,
)
from diffusers.utils.import_utils import is_xformers_available
from ..test_modeling_common import ModelTesterMixin
logger = logging.get_logger(__name__)
torch.backends.cuda.matmul.allow_tf32 = False
def create_lora_layers(model):
lora_attn_procs = {}
for name in model.attn_processors.keys():
cross_attention_dim = None if name.endswith("attn1.processor") else model.config.cross_attention_dim
if name.startswith("mid_block"):
hidden_size = model.config.block_out_channels[-1]
elif name.startswith("up_blocks"):
block_id = int(name[len("up_blocks.")])
hidden_size = list(reversed(model.config.block_out_channels))[block_id]
elif name.startswith("down_blocks"):
block_id = int(name[len("down_blocks.")])
hidden_size = model.config.block_out_channels[block_id]
lora_attn_procs[name] = LoRAAttnProcessor(hidden_size=hidden_size, cross_attention_dim=cross_attention_dim)
lora_attn_procs[name] = lora_attn_procs[name].to(model.device)
# add 1 to weights to mock trained weights
with torch.no_grad():
lora_attn_procs[name].to_q_lora.up.weight += 1
lora_attn_procs[name].to_k_lora.up.weight += 1
lora_attn_procs[name].to_v_lora.up.weight += 1
lora_attn_procs[name].to_out_lora.up.weight += 1
return lora_attn_procs
@skip_mps
class UNet3DConditionModelTests(ModelTesterMixin, unittest.TestCase):
model_class = UNet3DConditionModel
@property
def dummy_input(self):
batch_size = 4
num_channels = 4
num_frames = 4
sizes = (32, 32)
noise = floats_tensor((batch_size, num_channels, num_frames) + sizes).to(torch_device)
time_step = torch.tensor([10]).to(torch_device)
encoder_hidden_states = floats_tensor((batch_size, 4, 32)).to(torch_device)
return {"sample": noise, "timestep": time_step, "encoder_hidden_states": encoder_hidden_states}
@property
def input_shape(self):
return (4, 4, 32, 32)
@property
def output_shape(self):
return (4, 4, 32, 32)
def prepare_init_args_and_inputs_for_common(self):
init_dict = {
"block_out_channels": (32, 64),
"down_block_types": (
"CrossAttnDownBlock3D",
"DownBlock3D",
),
"up_block_types": ("UpBlock3D", "CrossAttnUpBlock3D"),
"cross_attention_dim": 32,
"attention_head_dim": 8,
"out_channels": 4,
"in_channels": 4,
"layers_per_block": 1,
"sample_size": 32,
}
inputs_dict = self.dummy_input
return init_dict, inputs_dict
@unittest.skipIf(
torch_device != "cuda" or not is_xformers_available(),
reason="XFormers attention is only available with CUDA and `xformers` installed",
)
def test_xformers_enable_works(self):
init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
model = self.model_class(**init_dict)
model.enable_xformers_memory_efficient_attention()
assert (
model.mid_block.attentions[0].transformer_blocks[0].attn1.processor.__class__.__name__
== "XFormersAttnProcessor"
), "xformers is not enabled"
# Overriding to set `norm_num_groups` needs to be different for this model.
def test_forward_with_norm_groups(self):
init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
init_dict["norm_num_groups"] = 32
model = self.model_class(**init_dict)
model.to(torch_device)
model.eval()
with torch.no_grad():
output = model(**inputs_dict)
if isinstance(output, dict):
output = output.sample
self.assertIsNotNone(output)
expected_shape = inputs_dict["sample"].shape
self.assertEqual(output.shape, expected_shape, "Input and output shapes do not match")
# Overriding since the UNet3D outputs a different structure.
def test_determinism(self):
init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
model = self.model_class(**init_dict)
model.to(torch_device)
model.eval()
with torch.no_grad():
# Warmup pass when using mps (see #372)
if torch_device == "mps" and isinstance(model, ModelMixin):
model(**self.dummy_input)
first = model(**inputs_dict)
if isinstance(first, dict):
first = first.sample
second = model(**inputs_dict)
if isinstance(second, dict):
second = second.sample
out_1 = first.cpu().numpy()
out_2 = second.cpu().numpy()
out_1 = out_1[~np.isnan(out_1)]
out_2 = out_2[~np.isnan(out_2)]
max_diff = np.amax(np.abs(out_1 - out_2))
self.assertLessEqual(max_diff, 1e-5)
def test_model_attention_slicing(self):
init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
init_dict["attention_head_dim"] = 8
model = self.model_class(**init_dict)
model.to(torch_device)
model.eval()
model.set_attention_slice("auto")
with torch.no_grad():
output = model(**inputs_dict)
assert output is not None
model.set_attention_slice("max")
with torch.no_grad():
output = model(**inputs_dict)
assert output is not None
model.set_attention_slice(2)
with torch.no_grad():
output = model(**inputs_dict)
assert output is not None
# (`attn_processors`) needs to be implemented in this model for this test.
# def test_lora_processors(self):
# (`attn_processors`) needs to be implemented in this model for this test.
# def test_lora_save_load(self):
# (`attn_processors`) needs to be implemented for this test in the model.
# def test_lora_save_load_safetensors(self):
# (`attn_processors`) needs to be implemented for this test in the model.
# def test_lora_save_safetensors_load_torch(self):
# (`attn_processors`) needs to be implemented for this test.
# def test_lora_save_torch_force_load_safetensors_error(self):
# (`attn_processors`) needs to be added for this test.
# def test_lora_on_off(self):
@unittest.skipIf(
torch_device != "cuda" or not is_xformers_available(),
reason="XFormers attention is only available with CUDA and `xformers` installed",
)
def test_lora_xformers_on_off(self):
# enable deterministic behavior for gradient checkpointing
init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
init_dict["attention_head_dim"] = 4
torch.manual_seed(0)
model = self.model_class(**init_dict)
model.to(torch_device)
lora_attn_procs = create_lora_layers(model)
model.set_attn_processor(lora_attn_procs)
# default
with torch.no_grad():
sample = model(**inputs_dict).sample
model.enable_xformers_memory_efficient_attention()
on_sample = model(**inputs_dict).sample
model.disable_xformers_memory_efficient_attention()
off_sample = model(**inputs_dict).sample
assert (sample - on_sample).abs().max() < 1e-4
assert (sample - off_sample).abs().max() < 1e-4
# (todo: sayakpaul) implement SLOW tests.
|