File size: 9,803 Bytes
fd43906
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
import contextlib
import importlib

from inspect import isfunction
import os
import soundfile as sf
import time
import wave

import urllib.request
import progressbar

CACHE_DIR = os.getenv(
    "AUDIOLDM_CACHE_DIR",
    os.path.join(os.path.expanduser("~"), ".cache/audioldm"))

def get_duration(fname):
    with contextlib.closing(wave.open(fname, 'r')) as f:
        frames = f.getnframes()
        rate = f.getframerate()
        return frames / float(rate)
    
def get_bit_depth(fname):
    with contextlib.closing(wave.open(fname, 'r')) as f:
        bit_depth = f.getsampwidth() * 8
        return bit_depth
       
def get_time():
    t = time.localtime()
    return time.strftime("%d_%m_%Y_%H_%M_%S", t)

def seed_everything(seed):
    import random, os
    import numpy as np
    import torch

    random.seed(seed)
    os.environ["PYTHONHASHSEED"] = str(seed)
    np.random.seed(seed)
    torch.manual_seed(seed)
    torch.cuda.manual_seed(seed)
    torch.backends.cudnn.deterministic = True
    torch.backends.cudnn.benchmark = True


def save_wave(waveform, savepath, name="outwav"):
    if type(name) is not list:
        name = [name] * waveform.shape[0]

    for i in range(waveform.shape[0]):
        path = os.path.join(
            savepath,
            "%s_%s.wav"
            % (
                os.path.basename(name[i])
                if (not ".wav" in name[i])
                else os.path.basename(name[i]).split(".")[0],
                i,
            ),
        )
        print("Save audio to %s" % path)
        sf.write(path, waveform[i, 0], samplerate=16000)


def exists(x):
    return x is not None


def default(val, d):
    if exists(val):
        return val
    return d() if isfunction(d) else d


def count_params(model, verbose=False):
    total_params = sum(p.numel() for p in model.parameters())
    if verbose:
        print(f"{model.__class__.__name__} has {total_params * 1.e-6:.2f} M params.")
    return total_params


def get_obj_from_str(string, reload=False):
    module, cls = string.rsplit(".", 1)
    if reload:
        module_imp = importlib.import_module(module)
        importlib.reload(module_imp)
    return getattr(importlib.import_module(module, package=None), cls)


def instantiate_from_config(config):
    if not "target" in config:
        if config == "__is_first_stage__":
            return None
        elif config == "__is_unconditional__":
            return None
        raise KeyError("Expected key `target` to instantiate.")
    return get_obj_from_str(config["target"])(**config.get("params", dict()))


def default_audioldm_config(model_name="audioldm-s-full"):    
    basic_config = {
        "wave_file_save_path": "./output",
        "id": {
            "version": "v1",
            "name": "default",
            "root": "/mnt/fast/nobackup/users/hl01486/projects/general_audio_generation/AudioLDM-python/config/default/latent_diffusion.yaml",
        },
        "preprocessing": {
            "audio": {"sampling_rate": 16000, "max_wav_value": 32768},
            "stft": {"filter_length": 1024, "hop_length": 160, "win_length": 1024},
            "mel": {
                "n_mel_channels": 64,
                "mel_fmin": 0,
                "mel_fmax": 8000,
                "freqm": 0,
                "timem": 0,
                "blur": False,
                "mean": -4.63,
                "std": 2.74,
                "target_length": 1024,
            },
        },
        "model": {
            "device": "cuda",
            "target": "audioldm.pipline.LatentDiffusion",
            "params": {
                "base_learning_rate": 5e-06,
                "linear_start": 0.0015,
                "linear_end": 0.0195,
                "num_timesteps_cond": 1,
                "log_every_t": 200,
                "timesteps": 1000,
                "first_stage_key": "fbank",
                "cond_stage_key": "waveform",
                "latent_t_size": 256,
                "latent_f_size": 16,
                "channels": 8,
                "cond_stage_trainable": True,
                "conditioning_key": "film",
                "monitor": "val/loss_simple_ema",
                "scale_by_std": True,
                "unet_config": {
                    "target": "audioldm.latent_diffusion.openaimodel.UNetModel",
                    "params": {
                        "image_size": 64,
                        "extra_film_condition_dim": 512,
                        "extra_film_use_concat": True,
                        "in_channels": 8,
                        "out_channels": 8,
                        "model_channels": 128,
                        "attention_resolutions": [8, 4, 2],
                        "num_res_blocks": 2,
                        "channel_mult": [1, 2, 3, 5],
                        "num_head_channels": 32,
                        "use_spatial_transformer": True,
                    },
                },
                "first_stage_config": {
                    "base_learning_rate": 4.5e-05,
                    "target": "audioldm.variational_autoencoder.autoencoder.AutoencoderKL",
                    "params": {
                        "monitor": "val/rec_loss",
                        "image_key": "fbank",
                        "subband": 1,
                        "embed_dim": 8,
                        "time_shuffle": 1,
                        "ddconfig": {
                            "double_z": True,
                            "z_channels": 8,
                            "resolution": 256,
                            "downsample_time": False,
                            "in_channels": 1,
                            "out_ch": 1,
                            "ch": 128,
                            "ch_mult": [1, 2, 4],
                            "num_res_blocks": 2,
                            "attn_resolutions": [],
                            "dropout": 0.0,
                        },
                    },
                },
                "cond_stage_config": {
                    "target": "audioldm.clap.encoders.CLAPAudioEmbeddingClassifierFreev2",
                    "params": {
                        "key": "waveform",
                        "sampling_rate": 16000,
                        "embed_mode": "audio",
                        "unconditional_prob": 0.1,
                    },
                },
            },
        },
    }
    
    if("-l-" in model_name):
        basic_config["model"]["params"]["unet_config"]["params"]["model_channels"] = 256
        basic_config["model"]["params"]["unet_config"]["params"]["num_head_channels"] = 64
    elif("-m-" in model_name):
        basic_config["model"]["params"]["unet_config"]["params"]["model_channels"] = 192
        basic_config["model"]["params"]["cond_stage_config"]["params"]["amodel"] = "HTSAT-base" # This model use a larger HTAST
        
    return basic_config
        
def get_metadata():
    return {
        "audioldm-s-full": {
            "path": os.path.join(
                CACHE_DIR,
                "audioldm-s-full.ckpt",
            ),
            "url": "https://zenodo.org/record/7600541/files/audioldm-s-full?download=1",
        },
        "audioldm-l-full": {
            "path": os.path.join(
                CACHE_DIR,
                "audioldm-l-full.ckpt",
            ),
            "url": "https://zenodo.org/record/7698295/files/audioldm-full-l.ckpt?download=1",
        },
        "audioldm-s-full-v2": {
            "path": os.path.join(
                CACHE_DIR,
                "audioldm-s-full-v2.ckpt",
            ),
            "url": "https://zenodo.org/record/7698295/files/audioldm-full-s-v2.ckpt?download=1",
        },
        "audioldm-m-text-ft": {
            "path": os.path.join(
                CACHE_DIR,
                "audioldm-m-text-ft.ckpt",
            ),
            "url": "https://zenodo.org/record/7813012/files/audioldm-m-text-ft.ckpt?download=1",
        },
        "audioldm-s-text-ft": {
            "path": os.path.join(
                CACHE_DIR,
                "audioldm-s-text-ft.ckpt",
            ),
            "url": "https://zenodo.org/record/7813012/files/audioldm-s-text-ft.ckpt?download=1",
        },
        "audioldm-m-full": {
            "path": os.path.join(
                CACHE_DIR,
                "audioldm-m-full.ckpt",
            ),
            "url": "https://zenodo.org/record/7813012/files/audioldm-m-full.ckpt?download=1",
        },
    }
    
class MyProgressBar():
    def __init__(self):
        self.pbar = None

    def __call__(self, block_num, block_size, total_size):
        if not self.pbar:
            self.pbar=progressbar.ProgressBar(maxval=total_size)
            self.pbar.start()

        downloaded = block_num * block_size
        if downloaded < total_size:
            self.pbar.update(downloaded)
        else:
            self.pbar.finish()
            
def download_checkpoint(checkpoint_name="audioldm-s-full"):
    meta = get_metadata()
    if(checkpoint_name not in meta.keys()):
        print("The model name you provided is not supported. Please use one of the following: ", meta.keys())

    if not os.path.exists(meta[checkpoint_name]["path"]) or os.path.getsize(meta[checkpoint_name]["path"]) < 2*10**9:
        os.makedirs(os.path.dirname(meta[checkpoint_name]["path"]), exist_ok=True)
        print(f"Downloading the main structure of {checkpoint_name} into {os.path.dirname(meta[checkpoint_name]['path'])}")

        urllib.request.urlretrieve(meta[checkpoint_name]["url"], meta[checkpoint_name]["path"], MyProgressBar())
        print(
            "Weights downloaded in: {} Size: {}".format(
                meta[checkpoint_name]["path"],
                os.path.getsize(meta[checkpoint_name]["path"]),
            )
        )