Spaces:
Runtime error
Runtime error
# coding=utf-8 | |
# Copyright 2023 HuggingFace Inc. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import inspect | |
import tempfile | |
import unittest | |
import unittest.mock as mock | |
from typing import Dict, List, Tuple | |
import numpy as np | |
import requests_mock | |
import torch | |
from requests.exceptions import HTTPError | |
from diffusers.models import UNet2DConditionModel | |
from diffusers.training_utils import EMAModel | |
from diffusers.utils import torch_device | |
from diffusers.utils.testing_utils import require_torch_gpu | |
class ModelUtilsTest(unittest.TestCase): | |
def tearDown(self): | |
super().tearDown() | |
import diffusers | |
diffusers.utils.import_utils._safetensors_available = True | |
def test_accelerate_loading_error_message(self): | |
with self.assertRaises(ValueError) as error_context: | |
UNet2DConditionModel.from_pretrained("hf-internal-testing/stable-diffusion-broken", subfolder="unet") | |
# make sure that error message states what keys are missing | |
assert "conv_out.bias" in str(error_context.exception) | |
def test_cached_files_are_used_when_no_internet(self): | |
# A mock response for an HTTP head request to emulate server down | |
response_mock = mock.Mock() | |
response_mock.status_code = 500 | |
response_mock.headers = {} | |
response_mock.raise_for_status.side_effect = HTTPError | |
response_mock.json.return_value = {} | |
# Download this model to make sure it's in the cache. | |
orig_model = UNet2DConditionModel.from_pretrained( | |
"hf-internal-testing/tiny-stable-diffusion-torch", subfolder="unet" | |
) | |
# Under the mock environment we get a 500 error when trying to reach the model. | |
with mock.patch("requests.request", return_value=response_mock): | |
# Download this model to make sure it's in the cache. | |
model = UNet2DConditionModel.from_pretrained( | |
"hf-internal-testing/tiny-stable-diffusion-torch", subfolder="unet", local_files_only=True | |
) | |
for p1, p2 in zip(orig_model.parameters(), model.parameters()): | |
if p1.data.ne(p2.data).sum() > 0: | |
assert False, "Parameters not the same!" | |
def test_one_request_upon_cached(self): | |
# TODO: For some reason this test fails on MPS where no HEAD call is made. | |
if torch_device == "mps": | |
return | |
import diffusers | |
diffusers.utils.import_utils._safetensors_available = False | |
with tempfile.TemporaryDirectory() as tmpdirname: | |
with requests_mock.mock(real_http=True) as m: | |
UNet2DConditionModel.from_pretrained( | |
"hf-internal-testing/tiny-stable-diffusion-torch", subfolder="unet", cache_dir=tmpdirname | |
) | |
download_requests = [r.method for r in m.request_history] | |
assert download_requests.count("HEAD") == 2, "2 HEAD requests one for config, one for model" | |
assert download_requests.count("GET") == 2, "2 GET requests one for config, one for model" | |
with requests_mock.mock(real_http=True) as m: | |
UNet2DConditionModel.from_pretrained( | |
"hf-internal-testing/tiny-stable-diffusion-torch", subfolder="unet", cache_dir=tmpdirname | |
) | |
cache_requests = [r.method for r in m.request_history] | |
assert ( | |
"HEAD" == cache_requests[0] and len(cache_requests) == 1 | |
), "We should call only `model_info` to check for _commit hash and `send_telemetry`" | |
diffusers.utils.import_utils._safetensors_available = True | |
def test_weight_overwrite(self): | |
with tempfile.TemporaryDirectory() as tmpdirname, self.assertRaises(ValueError) as error_context: | |
UNet2DConditionModel.from_pretrained( | |
"hf-internal-testing/tiny-stable-diffusion-torch", | |
subfolder="unet", | |
cache_dir=tmpdirname, | |
in_channels=9, | |
) | |
# make sure that error message states what keys are missing | |
assert "Cannot load" in str(error_context.exception) | |
with tempfile.TemporaryDirectory() as tmpdirname: | |
model = UNet2DConditionModel.from_pretrained( | |
"hf-internal-testing/tiny-stable-diffusion-torch", | |
subfolder="unet", | |
cache_dir=tmpdirname, | |
in_channels=9, | |
low_cpu_mem_usage=False, | |
ignore_mismatched_sizes=True, | |
) | |
assert model.config.in_channels == 9 | |
class ModelTesterMixin: | |
def test_from_save_pretrained(self): | |
init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common() | |
model = self.model_class(**init_dict) | |
if hasattr(model, "set_default_attn_processor"): | |
model.set_default_attn_processor() | |
model.to(torch_device) | |
model.eval() | |
with tempfile.TemporaryDirectory() as tmpdirname: | |
model.save_pretrained(tmpdirname) | |
new_model = self.model_class.from_pretrained(tmpdirname) | |
if hasattr(new_model, "set_default_attn_processor"): | |
new_model.set_default_attn_processor() | |
new_model.to(torch_device) | |
with torch.no_grad(): | |
image = model(**inputs_dict) | |
if isinstance(image, dict): | |
image = image.sample | |
new_image = new_model(**inputs_dict) | |
if isinstance(new_image, dict): | |
new_image = new_image.sample | |
max_diff = (image - new_image).abs().sum().item() | |
self.assertLessEqual(max_diff, 5e-5, "Models give different forward passes") | |
def test_from_save_pretrained_variant(self): | |
init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common() | |
model = self.model_class(**init_dict) | |
if hasattr(model, "set_default_attn_processor"): | |
model.set_default_attn_processor() | |
model.to(torch_device) | |
model.eval() | |
with tempfile.TemporaryDirectory() as tmpdirname: | |
model.save_pretrained(tmpdirname, variant="fp16") | |
new_model = self.model_class.from_pretrained(tmpdirname, variant="fp16") | |
if hasattr(new_model, "set_default_attn_processor"): | |
new_model.set_default_attn_processor() | |
# non-variant cannot be loaded | |
with self.assertRaises(OSError) as error_context: | |
self.model_class.from_pretrained(tmpdirname) | |
# make sure that error message states what keys are missing | |
assert "Error no file named diffusion_pytorch_model.bin found in directory" in str(error_context.exception) | |
new_model.to(torch_device) | |
with torch.no_grad(): | |
image = model(**inputs_dict) | |
if isinstance(image, dict): | |
image = image.sample | |
new_image = new_model(**inputs_dict) | |
if isinstance(new_image, dict): | |
new_image = new_image.sample | |
max_diff = (image - new_image).abs().sum().item() | |
self.assertLessEqual(max_diff, 5e-5, "Models give different forward passes") | |
def test_from_save_pretrained_dynamo(self): | |
init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common() | |
model = self.model_class(**init_dict) | |
model.to(torch_device) | |
model = torch.compile(model) | |
with tempfile.TemporaryDirectory() as tmpdirname: | |
model.save_pretrained(tmpdirname) | |
new_model = self.model_class.from_pretrained(tmpdirname) | |
new_model.to(torch_device) | |
assert new_model.__class__ == self.model_class | |
def test_from_save_pretrained_dtype(self): | |
init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common() | |
model = self.model_class(**init_dict) | |
model.to(torch_device) | |
model.eval() | |
for dtype in [torch.float32, torch.float16, torch.bfloat16]: | |
if torch_device == "mps" and dtype == torch.bfloat16: | |
continue | |
with tempfile.TemporaryDirectory() as tmpdirname: | |
model.to(dtype) | |
model.save_pretrained(tmpdirname) | |
new_model = self.model_class.from_pretrained(tmpdirname, low_cpu_mem_usage=True, torch_dtype=dtype) | |
assert new_model.dtype == dtype | |
new_model = self.model_class.from_pretrained(tmpdirname, low_cpu_mem_usage=False, torch_dtype=dtype) | |
assert new_model.dtype == dtype | |
def test_determinism(self): | |
init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common() | |
model = self.model_class(**init_dict) | |
model.to(torch_device) | |
model.eval() | |
with torch.no_grad(): | |
first = model(**inputs_dict) | |
if isinstance(first, dict): | |
first = first.sample | |
second = model(**inputs_dict) | |
if isinstance(second, dict): | |
second = second.sample | |
out_1 = first.cpu().numpy() | |
out_2 = second.cpu().numpy() | |
out_1 = out_1[~np.isnan(out_1)] | |
out_2 = out_2[~np.isnan(out_2)] | |
max_diff = np.amax(np.abs(out_1 - out_2)) | |
self.assertLessEqual(max_diff, 1e-5) | |
def test_output(self): | |
init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common() | |
model = self.model_class(**init_dict) | |
model.to(torch_device) | |
model.eval() | |
with torch.no_grad(): | |
output = model(**inputs_dict) | |
if isinstance(output, dict): | |
output = output.sample | |
self.assertIsNotNone(output) | |
expected_shape = inputs_dict["sample"].shape | |
self.assertEqual(output.shape, expected_shape, "Input and output shapes do not match") | |
def test_forward_with_norm_groups(self): | |
init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common() | |
init_dict["norm_num_groups"] = 16 | |
init_dict["block_out_channels"] = (16, 32) | |
model = self.model_class(**init_dict) | |
model.to(torch_device) | |
model.eval() | |
with torch.no_grad(): | |
output = model(**inputs_dict) | |
if isinstance(output, dict): | |
output = output.sample | |
self.assertIsNotNone(output) | |
expected_shape = inputs_dict["sample"].shape | |
self.assertEqual(output.shape, expected_shape, "Input and output shapes do not match") | |
def test_forward_signature(self): | |
init_dict, _ = self.prepare_init_args_and_inputs_for_common() | |
model = self.model_class(**init_dict) | |
signature = inspect.signature(model.forward) | |
# signature.parameters is an OrderedDict => so arg_names order is deterministic | |
arg_names = [*signature.parameters.keys()] | |
expected_arg_names = ["sample", "timestep"] | |
self.assertListEqual(arg_names[:2], expected_arg_names) | |
def test_model_from_pretrained(self): | |
init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common() | |
model = self.model_class(**init_dict) | |
model.to(torch_device) | |
model.eval() | |
# test if the model can be loaded from the config | |
# and has all the expected shape | |
with tempfile.TemporaryDirectory() as tmpdirname: | |
model.save_pretrained(tmpdirname) | |
new_model = self.model_class.from_pretrained(tmpdirname) | |
new_model.to(torch_device) | |
new_model.eval() | |
# check if all parameters shape are the same | |
for param_name in model.state_dict().keys(): | |
param_1 = model.state_dict()[param_name] | |
param_2 = new_model.state_dict()[param_name] | |
self.assertEqual(param_1.shape, param_2.shape) | |
with torch.no_grad(): | |
output_1 = model(**inputs_dict) | |
if isinstance(output_1, dict): | |
output_1 = output_1.sample | |
output_2 = new_model(**inputs_dict) | |
if isinstance(output_2, dict): | |
output_2 = output_2.sample | |
self.assertEqual(output_1.shape, output_2.shape) | |
def test_training(self): | |
init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common() | |
model = self.model_class(**init_dict) | |
model.to(torch_device) | |
model.train() | |
output = model(**inputs_dict) | |
if isinstance(output, dict): | |
output = output.sample | |
noise = torch.randn((inputs_dict["sample"].shape[0],) + self.output_shape).to(torch_device) | |
loss = torch.nn.functional.mse_loss(output, noise) | |
loss.backward() | |
def test_ema_training(self): | |
init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common() | |
model = self.model_class(**init_dict) | |
model.to(torch_device) | |
model.train() | |
ema_model = EMAModel(model.parameters()) | |
output = model(**inputs_dict) | |
if isinstance(output, dict): | |
output = output.sample | |
noise = torch.randn((inputs_dict["sample"].shape[0],) + self.output_shape).to(torch_device) | |
loss = torch.nn.functional.mse_loss(output, noise) | |
loss.backward() | |
ema_model.step(model.parameters()) | |
def test_outputs_equivalence(self): | |
def set_nan_tensor_to_zero(t): | |
# Temporary fallback until `aten::_index_put_impl_` is implemented in mps | |
# Track progress in https://github.com/pytorch/pytorch/issues/77764 | |
device = t.device | |
if device.type == "mps": | |
t = t.to("cpu") | |
t[t != t] = 0 | |
return t.to(device) | |
def recursive_check(tuple_object, dict_object): | |
if isinstance(tuple_object, (List, Tuple)): | |
for tuple_iterable_value, dict_iterable_value in zip(tuple_object, dict_object.values()): | |
recursive_check(tuple_iterable_value, dict_iterable_value) | |
elif isinstance(tuple_object, Dict): | |
for tuple_iterable_value, dict_iterable_value in zip(tuple_object.values(), dict_object.values()): | |
recursive_check(tuple_iterable_value, dict_iterable_value) | |
elif tuple_object is None: | |
return | |
else: | |
self.assertTrue( | |
torch.allclose( | |
set_nan_tensor_to_zero(tuple_object), set_nan_tensor_to_zero(dict_object), atol=1e-5 | |
), | |
msg=( | |
"Tuple and dict output are not equal. Difference:" | |
f" {torch.max(torch.abs(tuple_object - dict_object))}. Tuple has `nan`:" | |
f" {torch.isnan(tuple_object).any()} and `inf`: {torch.isinf(tuple_object)}. Dict has" | |
f" `nan`: {torch.isnan(dict_object).any()} and `inf`: {torch.isinf(dict_object)}." | |
), | |
) | |
init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common() | |
model = self.model_class(**init_dict) | |
model.to(torch_device) | |
model.eval() | |
with torch.no_grad(): | |
outputs_dict = model(**inputs_dict) | |
outputs_tuple = model(**inputs_dict, return_dict=False) | |
recursive_check(outputs_tuple, outputs_dict) | |
def test_enable_disable_gradient_checkpointing(self): | |
if not self.model_class._supports_gradient_checkpointing: | |
return # Skip test if model does not support gradient checkpointing | |
init_dict, _ = self.prepare_init_args_and_inputs_for_common() | |
# at init model should have gradient checkpointing disabled | |
model = self.model_class(**init_dict) | |
self.assertFalse(model.is_gradient_checkpointing) | |
# check enable works | |
model.enable_gradient_checkpointing() | |
self.assertTrue(model.is_gradient_checkpointing) | |
# check disable works | |
model.disable_gradient_checkpointing() | |
self.assertFalse(model.is_gradient_checkpointing) | |
def test_deprecated_kwargs(self): | |
has_kwarg_in_model_class = "kwargs" in inspect.signature(self.model_class.__init__).parameters | |
has_deprecated_kwarg = len(self.model_class._deprecated_kwargs) > 0 | |
if has_kwarg_in_model_class and not has_deprecated_kwarg: | |
raise ValueError( | |
f"{self.model_class} has `**kwargs` in its __init__ method but has not defined any deprecated kwargs" | |
" under the `_deprecated_kwargs` class attribute. Make sure to either remove `**kwargs` if there are" | |
" no deprecated arguments or add the deprecated argument with `_deprecated_kwargs =" | |
" [<deprecated_argument>]`" | |
) | |
if not has_kwarg_in_model_class and has_deprecated_kwarg: | |
raise ValueError( | |
f"{self.model_class} doesn't have `**kwargs` in its __init__ method but has defined deprecated kwargs" | |
" under the `_deprecated_kwargs` class attribute. Make sure to either add the `**kwargs` argument to" | |
f" {self.model_class}.__init__ if there are deprecated arguments or remove the deprecated argument" | |
" from `_deprecated_kwargs = [<deprecated_argument>]`" | |
) | |