Spaces:
Runtime error
Runtime error
# Copyright 2023 The HuggingFace Team. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import os | |
import sys | |
import unittest | |
git_repo_path = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) | |
sys.path.append(os.path.join(git_repo_path, "utils")) | |
import check_dummies # noqa: E402 | |
from check_dummies import create_dummy_files, create_dummy_object, find_backend, read_init # noqa: E402 | |
# Align TRANSFORMERS_PATH in check_dummies with the current path | |
check_dummies.PATH_TO_DIFFUSERS = os.path.join(git_repo_path, "src", "diffusers") | |
class CheckDummiesTester(unittest.TestCase): | |
def test_find_backend(self): | |
simple_backend = find_backend(" if not is_torch_available():") | |
self.assertEqual(simple_backend, "torch") | |
# backend_with_underscore = find_backend(" if not is_tensorflow_text_available():") | |
# self.assertEqual(backend_with_underscore, "tensorflow_text") | |
double_backend = find_backend(" if not (is_torch_available() and is_transformers_available()):") | |
self.assertEqual(double_backend, "torch_and_transformers") | |
# double_backend_with_underscore = find_backend( | |
# " if not (is_sentencepiece_available() and is_tensorflow_text_available()):" | |
# ) | |
# self.assertEqual(double_backend_with_underscore, "sentencepiece_and_tensorflow_text") | |
triple_backend = find_backend( | |
" if not (is_torch_available() and is_transformers_available() and is_onnx_available()):" | |
) | |
self.assertEqual(triple_backend, "torch_and_transformers_and_onnx") | |
def test_read_init(self): | |
objects = read_init() | |
# We don't assert on the exact list of keys to allow for smooth grow of backend-specific objects | |
self.assertIn("torch", objects) | |
self.assertIn("torch_and_transformers", objects) | |
self.assertIn("flax_and_transformers", objects) | |
self.assertIn("torch_and_transformers_and_onnx", objects) | |
# Likewise, we can't assert on the exact content of a key | |
self.assertIn("UNet2DModel", objects["torch"]) | |
self.assertIn("FlaxUNet2DConditionModel", objects["flax"]) | |
self.assertIn("StableDiffusionPipeline", objects["torch_and_transformers"]) | |
self.assertIn("FlaxStableDiffusionPipeline", objects["flax_and_transformers"]) | |
self.assertIn("LMSDiscreteScheduler", objects["torch_and_scipy"]) | |
self.assertIn("OnnxStableDiffusionPipeline", objects["torch_and_transformers_and_onnx"]) | |
def test_create_dummy_object(self): | |
dummy_constant = create_dummy_object("CONSTANT", "'torch'") | |
self.assertEqual(dummy_constant, "\nCONSTANT = None\n") | |
dummy_function = create_dummy_object("function", "'torch'") | |
self.assertEqual( | |
dummy_function, "\ndef function(*args, **kwargs):\n requires_backends(function, 'torch')\n" | |
) | |
expected_dummy_class = """ | |
class FakeClass(metaclass=DummyObject): | |
_backends = 'torch' | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, 'torch') | |
@classmethod | |
def from_config(cls, *args, **kwargs): | |
requires_backends(cls, 'torch') | |
@classmethod | |
def from_pretrained(cls, *args, **kwargs): | |
requires_backends(cls, 'torch') | |
""" | |
dummy_class = create_dummy_object("FakeClass", "'torch'") | |
self.assertEqual(dummy_class, expected_dummy_class) | |
def test_create_dummy_files(self): | |
expected_dummy_pytorch_file = """# This file is autogenerated by the command `make fix-copies`, do not edit. | |
from ..utils import DummyObject, requires_backends | |
CONSTANT = None | |
def function(*args, **kwargs): | |
requires_backends(function, ["torch"]) | |
class FakeClass(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
@classmethod | |
def from_config(cls, *args, **kwargs): | |
requires_backends(cls, ["torch"]) | |
@classmethod | |
def from_pretrained(cls, *args, **kwargs): | |
requires_backends(cls, ["torch"]) | |
""" | |
dummy_files = create_dummy_files({"torch": ["CONSTANT", "function", "FakeClass"]}) | |
self.assertEqual(dummy_files["torch"], expected_dummy_pytorch_file) | |