import argparse import json import torch from diffusers import AutoencoderKL, DDPMPipeline, DDPMScheduler, UNet2DModel, VQModel def shave_segments(path, n_shave_prefix_segments=1): """ Removes segments. Positive values shave the first segments, negative shave the last segments. """ if n_shave_prefix_segments >= 0: return ".".join(path.split(".")[n_shave_prefix_segments:]) else: return ".".join(path.split(".")[:n_shave_prefix_segments]) def renew_resnet_paths(old_list, n_shave_prefix_segments=0): mapping = [] for old_item in old_list: new_item = old_item new_item = new_item.replace("block.", "resnets.") new_item = new_item.replace("conv_shorcut", "conv1") new_item = new_item.replace("in_shortcut", "conv_shortcut") new_item = new_item.replace("temb_proj", "time_emb_proj") new_item = shave_segments(new_item, n_shave_prefix_segments=n_shave_prefix_segments) mapping.append({"old": old_item, "new": new_item}) return mapping def renew_attention_paths(old_list, n_shave_prefix_segments=0, in_mid=False): mapping = [] for old_item in old_list: new_item = old_item # In `model.mid`, the layer is called `attn`. if not in_mid: new_item = new_item.replace("attn", "attentions") new_item = new_item.replace(".k.", ".key.") new_item = new_item.replace(".v.", ".value.") new_item = new_item.replace(".q.", ".query.") new_item = new_item.replace("proj_out", "proj_attn") new_item = new_item.replace("norm", "group_norm") new_item = shave_segments(new_item, n_shave_prefix_segments=n_shave_prefix_segments) mapping.append({"old": old_item, "new": new_item}) return mapping def assign_to_checkpoint( paths, checkpoint, old_checkpoint, attention_paths_to_split=None, additional_replacements=None, config=None ): assert isinstance(paths, list), "Paths should be a list of dicts containing 'old' and 'new' keys." if attention_paths_to_split is not None: if config is None: raise ValueError("Please specify the config if setting 'attention_paths_to_split' to 'True'.") for path, path_map in attention_paths_to_split.items(): old_tensor = old_checkpoint[path] channels = old_tensor.shape[0] // 3 target_shape = (-1, channels) if len(old_tensor.shape) == 3 else (-1) num_heads = old_tensor.shape[0] // config.get("num_head_channels", 1) // 3 old_tensor = old_tensor.reshape((num_heads, 3 * channels // num_heads) + old_tensor.shape[1:]) query, key, value = old_tensor.split(channels // num_heads, dim=1) checkpoint[path_map["query"]] = query.reshape(target_shape).squeeze() checkpoint[path_map["key"]] = key.reshape(target_shape).squeeze() checkpoint[path_map["value"]] = value.reshape(target_shape).squeeze() for path in paths: new_path = path["new"] if attention_paths_to_split is not None and new_path in attention_paths_to_split: continue new_path = new_path.replace("down.", "down_blocks.") new_path = new_path.replace("up.", "up_blocks.") if additional_replacements is not None: for replacement in additional_replacements: new_path = new_path.replace(replacement["old"], replacement["new"]) if "attentions" in new_path: checkpoint[new_path] = old_checkpoint[path["old"]].squeeze() else: checkpoint[new_path] = old_checkpoint[path["old"]] def convert_ddpm_checkpoint(checkpoint, config): """ Takes a state dict and a config, and returns a converted checkpoint. """ new_checkpoint = {} new_checkpoint["time_embedding.linear_1.weight"] = checkpoint["temb.dense.0.weight"] new_checkpoint["time_embedding.linear_1.bias"] = checkpoint["temb.dense.0.bias"] new_checkpoint["time_embedding.linear_2.weight"] = checkpoint["temb.dense.1.weight"] new_checkpoint["time_embedding.linear_2.bias"] = checkpoint["temb.dense.1.bias"] new_checkpoint["conv_norm_out.weight"] = checkpoint["norm_out.weight"] new_checkpoint["conv_norm_out.bias"] = checkpoint["norm_out.bias"] new_checkpoint["conv_in.weight"] = checkpoint["conv_in.weight"] new_checkpoint["conv_in.bias"] = checkpoint["conv_in.bias"] new_checkpoint["conv_out.weight"] = checkpoint["conv_out.weight"] new_checkpoint["conv_out.bias"] = checkpoint["conv_out.bias"] num_down_blocks = len({".".join(layer.split(".")[:2]) for layer in checkpoint if "down" in layer}) down_blocks = { layer_id: [key for key in checkpoint if f"down.{layer_id}" in key] for layer_id in range(num_down_blocks) } num_up_blocks = len({".".join(layer.split(".")[:2]) for layer in checkpoint if "up" in layer}) up_blocks = {layer_id: [key for key in checkpoint if f"up.{layer_id}" in key] for layer_id in range(num_up_blocks)} for i in range(num_down_blocks): block_id = (i - 1) // (config["layers_per_block"] + 1) if any("downsample" in layer for layer in down_blocks[i]): new_checkpoint[f"down_blocks.{i}.downsamplers.0.conv.weight"] = checkpoint[ f"down.{i}.downsample.op.weight" ] new_checkpoint[f"down_blocks.{i}.downsamplers.0.conv.bias"] = checkpoint[f"down.{i}.downsample.op.bias"] # new_checkpoint[f'down_blocks.{i}.downsamplers.0.op.weight'] = checkpoint[f'down.{i}.downsample.conv.weight'] # new_checkpoint[f'down_blocks.{i}.downsamplers.0.op.bias'] = checkpoint[f'down.{i}.downsample.conv.bias'] if any("block" in layer for layer in down_blocks[i]): num_blocks = len( {".".join(shave_segments(layer, 2).split(".")[:2]) for layer in down_blocks[i] if "block" in layer} ) blocks = { layer_id: [key for key in down_blocks[i] if f"block.{layer_id}" in key] for layer_id in range(num_blocks) } if num_blocks > 0: for j in range(config["layers_per_block"]): paths = renew_resnet_paths(blocks[j]) assign_to_checkpoint(paths, new_checkpoint, checkpoint) if any("attn" in layer for layer in down_blocks[i]): num_attn = len( {".".join(shave_segments(layer, 2).split(".")[:2]) for layer in down_blocks[i] if "attn" in layer} ) attns = { layer_id: [key for key in down_blocks[i] if f"attn.{layer_id}" in key] for layer_id in range(num_blocks) } if num_attn > 0: for j in range(config["layers_per_block"]): paths = renew_attention_paths(attns[j]) assign_to_checkpoint(paths, new_checkpoint, checkpoint, config=config) mid_block_1_layers = [key for key in checkpoint if "mid.block_1" in key] mid_block_2_layers = [key for key in checkpoint if "mid.block_2" in key] mid_attn_1_layers = [key for key in checkpoint if "mid.attn_1" in key] # Mid new 2 paths = renew_resnet_paths(mid_block_1_layers) assign_to_checkpoint( paths, new_checkpoint, checkpoint, additional_replacements=[{"old": "mid.", "new": "mid_new_2."}, {"old": "block_1", "new": "resnets.0"}], ) paths = renew_resnet_paths(mid_block_2_layers) assign_to_checkpoint( paths, new_checkpoint, checkpoint, additional_replacements=[{"old": "mid.", "new": "mid_new_2."}, {"old": "block_2", "new": "resnets.1"}], ) paths = renew_attention_paths(mid_attn_1_layers, in_mid=True) assign_to_checkpoint( paths, new_checkpoint, checkpoint, additional_replacements=[{"old": "mid.", "new": "mid_new_2."}, {"old": "attn_1", "new": "attentions.0"}], ) for i in range(num_up_blocks): block_id = num_up_blocks - 1 - i if any("upsample" in layer for layer in up_blocks[i]): new_checkpoint[f"up_blocks.{block_id}.upsamplers.0.conv.weight"] = checkpoint[ f"up.{i}.upsample.conv.weight" ] new_checkpoint[f"up_blocks.{block_id}.upsamplers.0.conv.bias"] = checkpoint[f"up.{i}.upsample.conv.bias"] if any("block" in layer for layer in up_blocks[i]): num_blocks = len( {".".join(shave_segments(layer, 2).split(".")[:2]) for layer in up_blocks[i] if "block" in layer} ) blocks = { layer_id: [key for key in up_blocks[i] if f"block.{layer_id}" in key] for layer_id in range(num_blocks) } if num_blocks > 0: for j in range(config["layers_per_block"] + 1): replace_indices = {"old": f"up_blocks.{i}", "new": f"up_blocks.{block_id}"} paths = renew_resnet_paths(blocks[j]) assign_to_checkpoint(paths, new_checkpoint, checkpoint, additional_replacements=[replace_indices]) if any("attn" in layer for layer in up_blocks[i]): num_attn = len( {".".join(shave_segments(layer, 2).split(".")[:2]) for layer in up_blocks[i] if "attn" in layer} ) attns = { layer_id: [key for key in up_blocks[i] if f"attn.{layer_id}" in key] for layer_id in range(num_blocks) } if num_attn > 0: for j in range(config["layers_per_block"] + 1): replace_indices = {"old": f"up_blocks.{i}", "new": f"up_blocks.{block_id}"} paths = renew_attention_paths(attns[j]) assign_to_checkpoint(paths, new_checkpoint, checkpoint, additional_replacements=[replace_indices]) new_checkpoint = {k.replace("mid_new_2", "mid_block"): v for k, v in new_checkpoint.items()} return new_checkpoint def convert_vq_autoenc_checkpoint(checkpoint, config): """ Takes a state dict and a config, and returns a converted checkpoint. """ new_checkpoint = {} new_checkpoint["encoder.conv_norm_out.weight"] = checkpoint["encoder.norm_out.weight"] new_checkpoint["encoder.conv_norm_out.bias"] = checkpoint["encoder.norm_out.bias"] new_checkpoint["encoder.conv_in.weight"] = checkpoint["encoder.conv_in.weight"] new_checkpoint["encoder.conv_in.bias"] = checkpoint["encoder.conv_in.bias"] new_checkpoint["encoder.conv_out.weight"] = checkpoint["encoder.conv_out.weight"] new_checkpoint["encoder.conv_out.bias"] = checkpoint["encoder.conv_out.bias"] new_checkpoint["decoder.conv_norm_out.weight"] = checkpoint["decoder.norm_out.weight"] new_checkpoint["decoder.conv_norm_out.bias"] = checkpoint["decoder.norm_out.bias"] new_checkpoint["decoder.conv_in.weight"] = checkpoint["decoder.conv_in.weight"] new_checkpoint["decoder.conv_in.bias"] = checkpoint["decoder.conv_in.bias"] new_checkpoint["decoder.conv_out.weight"] = checkpoint["decoder.conv_out.weight"] new_checkpoint["decoder.conv_out.bias"] = checkpoint["decoder.conv_out.bias"] num_down_blocks = len({".".join(layer.split(".")[:3]) for layer in checkpoint if "down" in layer}) down_blocks = { layer_id: [key for key in checkpoint if f"down.{layer_id}" in key] for layer_id in range(num_down_blocks) } num_up_blocks = len({".".join(layer.split(".")[:3]) for layer in checkpoint if "up" in layer}) up_blocks = {layer_id: [key for key in checkpoint if f"up.{layer_id}" in key] for layer_id in range(num_up_blocks)} for i in range(num_down_blocks): block_id = (i - 1) // (config["layers_per_block"] + 1) if any("downsample" in layer for layer in down_blocks[i]): new_checkpoint[f"encoder.down_blocks.{i}.downsamplers.0.conv.weight"] = checkpoint[ f"encoder.down.{i}.downsample.conv.weight" ] new_checkpoint[f"encoder.down_blocks.{i}.downsamplers.0.conv.bias"] = checkpoint[ f"encoder.down.{i}.downsample.conv.bias" ] if any("block" in layer for layer in down_blocks[i]): num_blocks = len( {".".join(shave_segments(layer, 3).split(".")[:3]) for layer in down_blocks[i] if "block" in layer} ) blocks = { layer_id: [key for key in down_blocks[i] if f"block.{layer_id}" in key] for layer_id in range(num_blocks) } if num_blocks > 0: for j in range(config["layers_per_block"]): paths = renew_resnet_paths(blocks[j]) assign_to_checkpoint(paths, new_checkpoint, checkpoint) if any("attn" in layer for layer in down_blocks[i]): num_attn = len( {".".join(shave_segments(layer, 3).split(".")[:3]) for layer in down_blocks[i] if "attn" in layer} ) attns = { layer_id: [key for key in down_blocks[i] if f"attn.{layer_id}" in key] for layer_id in range(num_blocks) } if num_attn > 0: for j in range(config["layers_per_block"]): paths = renew_attention_paths(attns[j]) assign_to_checkpoint(paths, new_checkpoint, checkpoint, config=config) mid_block_1_layers = [key for key in checkpoint if "mid.block_1" in key] mid_block_2_layers = [key for key in checkpoint if "mid.block_2" in key] mid_attn_1_layers = [key for key in checkpoint if "mid.attn_1" in key] # Mid new 2 paths = renew_resnet_paths(mid_block_1_layers) assign_to_checkpoint( paths, new_checkpoint, checkpoint, additional_replacements=[{"old": "mid.", "new": "mid_new_2."}, {"old": "block_1", "new": "resnets.0"}], ) paths = renew_resnet_paths(mid_block_2_layers) assign_to_checkpoint( paths, new_checkpoint, checkpoint, additional_replacements=[{"old": "mid.", "new": "mid_new_2."}, {"old": "block_2", "new": "resnets.1"}], ) paths = renew_attention_paths(mid_attn_1_layers, in_mid=True) assign_to_checkpoint( paths, new_checkpoint, checkpoint, additional_replacements=[{"old": "mid.", "new": "mid_new_2."}, {"old": "attn_1", "new": "attentions.0"}], ) for i in range(num_up_blocks): block_id = num_up_blocks - 1 - i if any("upsample" in layer for layer in up_blocks[i]): new_checkpoint[f"decoder.up_blocks.{block_id}.upsamplers.0.conv.weight"] = checkpoint[ f"decoder.up.{i}.upsample.conv.weight" ] new_checkpoint[f"decoder.up_blocks.{block_id}.upsamplers.0.conv.bias"] = checkpoint[ f"decoder.up.{i}.upsample.conv.bias" ] if any("block" in layer for layer in up_blocks[i]): num_blocks = len( {".".join(shave_segments(layer, 3).split(".")[:3]) for layer in up_blocks[i] if "block" in layer} ) blocks = { layer_id: [key for key in up_blocks[i] if f"block.{layer_id}" in key] for layer_id in range(num_blocks) } if num_blocks > 0: for j in range(config["layers_per_block"] + 1): replace_indices = {"old": f"up_blocks.{i}", "new": f"up_blocks.{block_id}"} paths = renew_resnet_paths(blocks[j]) assign_to_checkpoint(paths, new_checkpoint, checkpoint, additional_replacements=[replace_indices]) if any("attn" in layer for layer in up_blocks[i]): num_attn = len( {".".join(shave_segments(layer, 3).split(".")[:3]) for layer in up_blocks[i] if "attn" in layer} ) attns = { layer_id: [key for key in up_blocks[i] if f"attn.{layer_id}" in key] for layer_id in range(num_blocks) } if num_attn > 0: for j in range(config["layers_per_block"] + 1): replace_indices = {"old": f"up_blocks.{i}", "new": f"up_blocks.{block_id}"} paths = renew_attention_paths(attns[j]) assign_to_checkpoint(paths, new_checkpoint, checkpoint, additional_replacements=[replace_indices]) new_checkpoint = {k.replace("mid_new_2", "mid_block"): v for k, v in new_checkpoint.items()} new_checkpoint["quant_conv.weight"] = checkpoint["quant_conv.weight"] new_checkpoint["quant_conv.bias"] = checkpoint["quant_conv.bias"] if "quantize.embedding.weight" in checkpoint: new_checkpoint["quantize.embedding.weight"] = checkpoint["quantize.embedding.weight"] new_checkpoint["post_quant_conv.weight"] = checkpoint["post_quant_conv.weight"] new_checkpoint["post_quant_conv.bias"] = checkpoint["post_quant_conv.bias"] return new_checkpoint if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument( "--checkpoint_path", default=None, type=str, required=True, help="Path to the checkpoint to convert." ) parser.add_argument( "--config_file", default=None, type=str, required=True, help="The config json file corresponding to the architecture.", ) parser.add_argument("--dump_path", default=None, type=str, required=True, help="Path to the output model.") args = parser.parse_args() checkpoint = torch.load(args.checkpoint_path) with open(args.config_file) as f: config = json.loads(f.read()) # unet case key_prefix_set = {key.split(".")[0] for key in checkpoint.keys()} if "encoder" in key_prefix_set and "decoder" in key_prefix_set: converted_checkpoint = convert_vq_autoenc_checkpoint(checkpoint, config) else: converted_checkpoint = convert_ddpm_checkpoint(checkpoint, config) if "ddpm" in config: del config["ddpm"] if config["_class_name"] == "VQModel": model = VQModel(**config) model.load_state_dict(converted_checkpoint) model.save_pretrained(args.dump_path) elif config["_class_name"] == "AutoencoderKL": model = AutoencoderKL(**config) model.load_state_dict(converted_checkpoint) model.save_pretrained(args.dump_path) else: model = UNet2DModel(**config) model.load_state_dict(converted_checkpoint) scheduler = DDPMScheduler.from_config("/".join(args.checkpoint_path.split("/")[:-1])) pipe = DDPMPipeline(unet=model, scheduler=scheduler) pipe.save_pretrained(args.dump_path)