import json import os import torch from diffusers import UNet1DModel os.makedirs("hub/hopper-medium-v2/unet/hor32", exist_ok=True) os.makedirs("hub/hopper-medium-v2/unet/hor128", exist_ok=True) os.makedirs("hub/hopper-medium-v2/value_function", exist_ok=True) def unet(hor): if hor == 128: down_block_types = ("DownResnetBlock1D", "DownResnetBlock1D", "DownResnetBlock1D") block_out_channels = (32, 128, 256) up_block_types = ("UpResnetBlock1D", "UpResnetBlock1D") elif hor == 32: down_block_types = ("DownResnetBlock1D", "DownResnetBlock1D", "DownResnetBlock1D", "DownResnetBlock1D") block_out_channels = (32, 64, 128, 256) up_block_types = ("UpResnetBlock1D", "UpResnetBlock1D", "UpResnetBlock1D") model = torch.load(f"/Users/bglickenhaus/Documents/diffuser/temporal_unet-hopper-mediumv2-hor{hor}.torch") state_dict = model.state_dict() config = { "down_block_types": down_block_types, "block_out_channels": block_out_channels, "up_block_types": up_block_types, "layers_per_block": 1, "use_timestep_embedding": True, "out_block_type": "OutConv1DBlock", "norm_num_groups": 8, "downsample_each_block": False, "in_channels": 14, "out_channels": 14, "extra_in_channels": 0, "time_embedding_type": "positional", "flip_sin_to_cos": False, "freq_shift": 1, "sample_size": 65536, "mid_block_type": "MidResTemporalBlock1D", "act_fn": "mish", } hf_value_function = UNet1DModel(**config) print(f"length of state dict: {len(state_dict.keys())}") print(f"length of value function dict: {len(hf_value_function.state_dict().keys())}") mapping = dict(zip(model.state_dict().keys(), hf_value_function.state_dict().keys())) for k, v in mapping.items(): state_dict[v] = state_dict.pop(k) hf_value_function.load_state_dict(state_dict) torch.save(hf_value_function.state_dict(), f"hub/hopper-medium-v2/unet/hor{hor}/diffusion_pytorch_model.bin") with open(f"hub/hopper-medium-v2/unet/hor{hor}/config.json", "w") as f: json.dump(config, f) def value_function(): config = { "in_channels": 14, "down_block_types": ("DownResnetBlock1D", "DownResnetBlock1D", "DownResnetBlock1D", "DownResnetBlock1D"), "up_block_types": (), "out_block_type": "ValueFunction", "mid_block_type": "ValueFunctionMidBlock1D", "block_out_channels": (32, 64, 128, 256), "layers_per_block": 1, "downsample_each_block": True, "sample_size": 65536, "out_channels": 14, "extra_in_channels": 0, "time_embedding_type": "positional", "use_timestep_embedding": True, "flip_sin_to_cos": False, "freq_shift": 1, "norm_num_groups": 8, "act_fn": "mish", } model = torch.load("/Users/bglickenhaus/Documents/diffuser/value_function-hopper-mediumv2-hor32.torch") state_dict = model hf_value_function = UNet1DModel(**config) print(f"length of state dict: {len(state_dict.keys())}") print(f"length of value function dict: {len(hf_value_function.state_dict().keys())}") mapping = dict(zip(state_dict.keys(), hf_value_function.state_dict().keys())) for k, v in mapping.items(): state_dict[v] = state_dict.pop(k) hf_value_function.load_state_dict(state_dict) torch.save(hf_value_function.state_dict(), "hub/hopper-medium-v2/value_function/diffusion_pytorch_model.bin") with open("hub/hopper-medium-v2/value_function/config.json", "w") as f: json.dump(config, f) if __name__ == "__main__": unet(32) # unet(128) value_function()