Spaces:
Running
on
Zero
Running
on
Zero
File size: 24,596 Bytes
ffead1e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 |
# coding=utf-8
# Copyright 2023 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import unittest
import numpy as np
import torch
from torch import nn
from diffusers.models.attention import GEGLU, AdaLayerNorm, ApproximateGELU, AttentionBlock
from diffusers.models.embeddings import get_timestep_embedding
from diffusers.models.resnet import Downsample2D, ResnetBlock2D, Upsample2D
from diffusers.models.transformer_2d import Transformer2DModel
from diffusers.utils import torch_device
torch.backends.cuda.matmul.allow_tf32 = False
class EmbeddingsTests(unittest.TestCase):
def test_timestep_embeddings(self):
embedding_dim = 256
timesteps = torch.arange(16)
t1 = get_timestep_embedding(timesteps, embedding_dim)
# first vector should always be composed only of 0's and 1's
assert (t1[0, : embedding_dim // 2] - 0).abs().sum() < 1e-5
assert (t1[0, embedding_dim // 2 :] - 1).abs().sum() < 1e-5
# last element of each vector should be one
assert (t1[:, -1] - 1).abs().sum() < 1e-5
# For large embeddings (e.g. 128) the frequency of every vector is higher
# than the previous one which means that the gradients of later vectors are
# ALWAYS higher than the previous ones
grad_mean = np.abs(np.gradient(t1, axis=-1)).mean(axis=1)
prev_grad = 0.0
for grad in grad_mean:
assert grad > prev_grad
prev_grad = grad
def test_timestep_defaults(self):
embedding_dim = 16
timesteps = torch.arange(10)
t1 = get_timestep_embedding(timesteps, embedding_dim)
t2 = get_timestep_embedding(
timesteps, embedding_dim, flip_sin_to_cos=False, downscale_freq_shift=1, max_period=10_000
)
assert torch.allclose(t1.cpu(), t2.cpu(), 1e-3)
def test_timestep_flip_sin_cos(self):
embedding_dim = 16
timesteps = torch.arange(10)
t1 = get_timestep_embedding(timesteps, embedding_dim, flip_sin_to_cos=True)
t1 = torch.cat([t1[:, embedding_dim // 2 :], t1[:, : embedding_dim // 2]], dim=-1)
t2 = get_timestep_embedding(timesteps, embedding_dim, flip_sin_to_cos=False)
assert torch.allclose(t1.cpu(), t2.cpu(), 1e-3)
def test_timestep_downscale_freq_shift(self):
embedding_dim = 16
timesteps = torch.arange(10)
t1 = get_timestep_embedding(timesteps, embedding_dim, downscale_freq_shift=0)
t2 = get_timestep_embedding(timesteps, embedding_dim, downscale_freq_shift=1)
# get cosine half (vectors that are wrapped into cosine)
cosine_half = (t1 - t2)[:, embedding_dim // 2 :]
# cosine needs to be negative
assert (np.abs((cosine_half <= 0).numpy()) - 1).sum() < 1e-5
def test_sinoid_embeddings_hardcoded(self):
embedding_dim = 64
timesteps = torch.arange(128)
# standard unet, score_vde
t1 = get_timestep_embedding(timesteps, embedding_dim, downscale_freq_shift=1, flip_sin_to_cos=False)
# glide, ldm
t2 = get_timestep_embedding(timesteps, embedding_dim, downscale_freq_shift=0, flip_sin_to_cos=True)
# grad-tts
t3 = get_timestep_embedding(timesteps, embedding_dim, scale=1000)
assert torch.allclose(
t1[23:26, 47:50].flatten().cpu(),
torch.tensor([0.9646, 0.9804, 0.9892, 0.9615, 0.9787, 0.9882, 0.9582, 0.9769, 0.9872]),
1e-3,
)
assert torch.allclose(
t2[23:26, 47:50].flatten().cpu(),
torch.tensor([0.3019, 0.2280, 0.1716, 0.3146, 0.2377, 0.1790, 0.3272, 0.2474, 0.1864]),
1e-3,
)
assert torch.allclose(
t3[23:26, 47:50].flatten().cpu(),
torch.tensor([-0.9801, -0.9464, -0.9349, -0.3952, 0.8887, -0.9709, 0.5299, -0.2853, -0.9927]),
1e-3,
)
class Upsample2DBlockTests(unittest.TestCase):
def test_upsample_default(self):
torch.manual_seed(0)
sample = torch.randn(1, 32, 32, 32)
upsample = Upsample2D(channels=32, use_conv=False)
with torch.no_grad():
upsampled = upsample(sample)
assert upsampled.shape == (1, 32, 64, 64)
output_slice = upsampled[0, -1, -3:, -3:]
expected_slice = torch.tensor([-0.2173, -1.2079, -1.2079, 0.2952, 1.1254, 1.1254, 0.2952, 1.1254, 1.1254])
assert torch.allclose(output_slice.flatten(), expected_slice, atol=1e-3)
def test_upsample_with_conv(self):
torch.manual_seed(0)
sample = torch.randn(1, 32, 32, 32)
upsample = Upsample2D(channels=32, use_conv=True)
with torch.no_grad():
upsampled = upsample(sample)
assert upsampled.shape == (1, 32, 64, 64)
output_slice = upsampled[0, -1, -3:, -3:]
expected_slice = torch.tensor([0.7145, 1.3773, 0.3492, 0.8448, 1.0839, -0.3341, 0.5956, 0.1250, -0.4841])
assert torch.allclose(output_slice.flatten(), expected_slice, atol=1e-3)
def test_upsample_with_conv_out_dim(self):
torch.manual_seed(0)
sample = torch.randn(1, 32, 32, 32)
upsample = Upsample2D(channels=32, use_conv=True, out_channels=64)
with torch.no_grad():
upsampled = upsample(sample)
assert upsampled.shape == (1, 64, 64, 64)
output_slice = upsampled[0, -1, -3:, -3:]
expected_slice = torch.tensor([0.2703, 0.1656, -0.2538, -0.0553, -0.2984, 0.1044, 0.1155, 0.2579, 0.7755])
assert torch.allclose(output_slice.flatten(), expected_slice, atol=1e-3)
def test_upsample_with_transpose(self):
torch.manual_seed(0)
sample = torch.randn(1, 32, 32, 32)
upsample = Upsample2D(channels=32, use_conv=False, use_conv_transpose=True)
with torch.no_grad():
upsampled = upsample(sample)
assert upsampled.shape == (1, 32, 64, 64)
output_slice = upsampled[0, -1, -3:, -3:]
expected_slice = torch.tensor([-0.3028, -0.1582, 0.0071, 0.0350, -0.4799, -0.1139, 0.1056, -0.1153, -0.1046])
assert torch.allclose(output_slice.flatten(), expected_slice, atol=1e-3)
class Downsample2DBlockTests(unittest.TestCase):
def test_downsample_default(self):
torch.manual_seed(0)
sample = torch.randn(1, 32, 64, 64)
downsample = Downsample2D(channels=32, use_conv=False)
with torch.no_grad():
downsampled = downsample(sample)
assert downsampled.shape == (1, 32, 32, 32)
output_slice = downsampled[0, -1, -3:, -3:]
expected_slice = torch.tensor([-0.0513, -0.3889, 0.0640, 0.0836, -0.5460, -0.0341, -0.0169, -0.6967, 0.1179])
max_diff = (output_slice.flatten() - expected_slice).abs().sum().item()
assert max_diff <= 1e-3
# assert torch.allclose(output_slice.flatten(), expected_slice, atol=1e-1)
def test_downsample_with_conv(self):
torch.manual_seed(0)
sample = torch.randn(1, 32, 64, 64)
downsample = Downsample2D(channels=32, use_conv=True)
with torch.no_grad():
downsampled = downsample(sample)
assert downsampled.shape == (1, 32, 32, 32)
output_slice = downsampled[0, -1, -3:, -3:]
expected_slice = torch.tensor(
[0.9267, 0.5878, 0.3337, 1.2321, -0.1191, -0.3984, -0.7532, -0.0715, -0.3913],
)
assert torch.allclose(output_slice.flatten(), expected_slice, atol=1e-3)
def test_downsample_with_conv_pad1(self):
torch.manual_seed(0)
sample = torch.randn(1, 32, 64, 64)
downsample = Downsample2D(channels=32, use_conv=True, padding=1)
with torch.no_grad():
downsampled = downsample(sample)
assert downsampled.shape == (1, 32, 32, 32)
output_slice = downsampled[0, -1, -3:, -3:]
expected_slice = torch.tensor([0.9267, 0.5878, 0.3337, 1.2321, -0.1191, -0.3984, -0.7532, -0.0715, -0.3913])
assert torch.allclose(output_slice.flatten(), expected_slice, atol=1e-3)
def test_downsample_with_conv_out_dim(self):
torch.manual_seed(0)
sample = torch.randn(1, 32, 64, 64)
downsample = Downsample2D(channels=32, use_conv=True, out_channels=16)
with torch.no_grad():
downsampled = downsample(sample)
assert downsampled.shape == (1, 16, 32, 32)
output_slice = downsampled[0, -1, -3:, -3:]
expected_slice = torch.tensor([-0.6586, 0.5985, 0.0721, 0.1256, -0.1492, 0.4436, -0.2544, 0.5021, 1.1522])
assert torch.allclose(output_slice.flatten(), expected_slice, atol=1e-3)
class ResnetBlock2DTests(unittest.TestCase):
def test_resnet_default(self):
torch.manual_seed(0)
sample = torch.randn(1, 32, 64, 64).to(torch_device)
temb = torch.randn(1, 128).to(torch_device)
resnet_block = ResnetBlock2D(in_channels=32, temb_channels=128).to(torch_device)
with torch.no_grad():
output_tensor = resnet_block(sample, temb)
assert output_tensor.shape == (1, 32, 64, 64)
output_slice = output_tensor[0, -1, -3:, -3:]
expected_slice = torch.tensor(
[-1.9010, -0.2974, -0.8245, -1.3533, 0.8742, -0.9645, -2.0584, 1.3387, -0.4746], device=torch_device
)
assert torch.allclose(output_slice.flatten(), expected_slice, atol=1e-3)
def test_restnet_with_use_in_shortcut(self):
torch.manual_seed(0)
sample = torch.randn(1, 32, 64, 64).to(torch_device)
temb = torch.randn(1, 128).to(torch_device)
resnet_block = ResnetBlock2D(in_channels=32, temb_channels=128, use_in_shortcut=True).to(torch_device)
with torch.no_grad():
output_tensor = resnet_block(sample, temb)
assert output_tensor.shape == (1, 32, 64, 64)
output_slice = output_tensor[0, -1, -3:, -3:]
expected_slice = torch.tensor(
[0.2226, -1.0791, -0.1629, 0.3659, -0.2889, -1.2376, 0.0582, 0.9206, 0.0044], device=torch_device
)
assert torch.allclose(output_slice.flatten(), expected_slice, atol=1e-3)
def test_resnet_up(self):
torch.manual_seed(0)
sample = torch.randn(1, 32, 64, 64).to(torch_device)
temb = torch.randn(1, 128).to(torch_device)
resnet_block = ResnetBlock2D(in_channels=32, temb_channels=128, up=True).to(torch_device)
with torch.no_grad():
output_tensor = resnet_block(sample, temb)
assert output_tensor.shape == (1, 32, 128, 128)
output_slice = output_tensor[0, -1, -3:, -3:]
expected_slice = torch.tensor(
[1.2130, -0.8753, -0.9027, 1.5783, -0.5362, -0.5001, 1.0726, -0.7732, -0.4182], device=torch_device
)
assert torch.allclose(output_slice.flatten(), expected_slice, atol=1e-3)
def test_resnet_down(self):
torch.manual_seed(0)
sample = torch.randn(1, 32, 64, 64).to(torch_device)
temb = torch.randn(1, 128).to(torch_device)
resnet_block = ResnetBlock2D(in_channels=32, temb_channels=128, down=True).to(torch_device)
with torch.no_grad():
output_tensor = resnet_block(sample, temb)
assert output_tensor.shape == (1, 32, 32, 32)
output_slice = output_tensor[0, -1, -3:, -3:]
expected_slice = torch.tensor(
[-0.3002, -0.7135, 0.1359, 0.0561, -0.7935, 0.0113, -0.1766, -0.6714, -0.0436], device=torch_device
)
assert torch.allclose(output_slice.flatten(), expected_slice, atol=1e-3)
def test_restnet_with_kernel_fir(self):
torch.manual_seed(0)
sample = torch.randn(1, 32, 64, 64).to(torch_device)
temb = torch.randn(1, 128).to(torch_device)
resnet_block = ResnetBlock2D(in_channels=32, temb_channels=128, kernel="fir", down=True).to(torch_device)
with torch.no_grad():
output_tensor = resnet_block(sample, temb)
assert output_tensor.shape == (1, 32, 32, 32)
output_slice = output_tensor[0, -1, -3:, -3:]
expected_slice = torch.tensor(
[-0.0934, -0.5729, 0.0909, -0.2710, -0.5044, 0.0243, -0.0665, -0.5267, -0.3136], device=torch_device
)
assert torch.allclose(output_slice.flatten(), expected_slice, atol=1e-3)
def test_restnet_with_kernel_sde_vp(self):
torch.manual_seed(0)
sample = torch.randn(1, 32, 64, 64).to(torch_device)
temb = torch.randn(1, 128).to(torch_device)
resnet_block = ResnetBlock2D(in_channels=32, temb_channels=128, kernel="sde_vp", down=True).to(torch_device)
with torch.no_grad():
output_tensor = resnet_block(sample, temb)
assert output_tensor.shape == (1, 32, 32, 32)
output_slice = output_tensor[0, -1, -3:, -3:]
expected_slice = torch.tensor(
[-0.3002, -0.7135, 0.1359, 0.0561, -0.7935, 0.0113, -0.1766, -0.6714, -0.0436], device=torch_device
)
assert torch.allclose(output_slice.flatten(), expected_slice, atol=1e-3)
class AttentionBlockTests(unittest.TestCase):
@unittest.skipIf(
torch_device == "mps", "Matmul crashes on MPS, see https://github.com/pytorch/pytorch/issues/84039"
)
def test_attention_block_default(self):
torch.manual_seed(0)
if torch.cuda.is_available():
torch.cuda.manual_seed_all(0)
sample = torch.randn(1, 32, 64, 64).to(torch_device)
attentionBlock = AttentionBlock(
channels=32,
num_head_channels=1,
rescale_output_factor=1.0,
eps=1e-6,
norm_num_groups=32,
).to(torch_device)
with torch.no_grad():
attention_scores = attentionBlock(sample)
assert attention_scores.shape == (1, 32, 64, 64)
output_slice = attention_scores[0, -1, -3:, -3:]
expected_slice = torch.tensor(
[-1.4975, -0.0038, -0.7847, -1.4567, 1.1220, -0.8962, -1.7394, 1.1319, -0.5427], device=torch_device
)
assert torch.allclose(output_slice.flatten(), expected_slice, atol=1e-3)
def test_attention_block_sd(self):
# This version uses SD params and is compatible with mps
torch.manual_seed(0)
if torch.cuda.is_available():
torch.cuda.manual_seed_all(0)
sample = torch.randn(1, 512, 64, 64).to(torch_device)
attentionBlock = AttentionBlock(
channels=512,
rescale_output_factor=1.0,
eps=1e-6,
norm_num_groups=32,
).to(torch_device)
with torch.no_grad():
attention_scores = attentionBlock(sample)
assert attention_scores.shape == (1, 512, 64, 64)
output_slice = attention_scores[0, -1, -3:, -3:]
expected_slice = torch.tensor(
[-0.6621, -0.0156, -3.2766, 0.8025, -0.8609, 0.2820, 0.0905, -1.1179, -3.2126], device=torch_device
)
assert torch.allclose(output_slice.flatten(), expected_slice, atol=1e-3)
class Transformer2DModelTests(unittest.TestCase):
def test_spatial_transformer_default(self):
torch.manual_seed(0)
if torch.cuda.is_available():
torch.cuda.manual_seed_all(0)
sample = torch.randn(1, 32, 64, 64).to(torch_device)
spatial_transformer_block = Transformer2DModel(
in_channels=32,
num_attention_heads=1,
attention_head_dim=32,
dropout=0.0,
cross_attention_dim=None,
).to(torch_device)
with torch.no_grad():
attention_scores = spatial_transformer_block(sample).sample
assert attention_scores.shape == (1, 32, 64, 64)
output_slice = attention_scores[0, -1, -3:, -3:]
expected_slice = torch.tensor(
[-1.9455, -0.0066, -1.3933, -1.5878, 0.5325, -0.6486, -1.8648, 0.7515, -0.9689], device=torch_device
)
assert torch.allclose(output_slice.flatten(), expected_slice, atol=1e-3)
def test_spatial_transformer_cross_attention_dim(self):
torch.manual_seed(0)
if torch.cuda.is_available():
torch.cuda.manual_seed_all(0)
sample = torch.randn(1, 64, 64, 64).to(torch_device)
spatial_transformer_block = Transformer2DModel(
in_channels=64,
num_attention_heads=2,
attention_head_dim=32,
dropout=0.0,
cross_attention_dim=64,
).to(torch_device)
with torch.no_grad():
context = torch.randn(1, 4, 64).to(torch_device)
attention_scores = spatial_transformer_block(sample, context).sample
assert attention_scores.shape == (1, 64, 64, 64)
output_slice = attention_scores[0, -1, -3:, -3:]
expected_slice = torch.tensor(
[-0.2555, -0.8877, -2.4739, -2.2251, 1.2714, 0.0807, -0.4161, -1.6408, -0.0471], device=torch_device
)
assert torch.allclose(output_slice.flatten(), expected_slice, atol=1e-3)
def test_spatial_transformer_timestep(self):
torch.manual_seed(0)
if torch.cuda.is_available():
torch.cuda.manual_seed_all(0)
num_embeds_ada_norm = 5
sample = torch.randn(1, 64, 64, 64).to(torch_device)
spatial_transformer_block = Transformer2DModel(
in_channels=64,
num_attention_heads=2,
attention_head_dim=32,
dropout=0.0,
cross_attention_dim=64,
num_embeds_ada_norm=num_embeds_ada_norm,
).to(torch_device)
with torch.no_grad():
timestep_1 = torch.tensor(1, dtype=torch.long).to(torch_device)
timestep_2 = torch.tensor(2, dtype=torch.long).to(torch_device)
attention_scores_1 = spatial_transformer_block(sample, timestep=timestep_1).sample
attention_scores_2 = spatial_transformer_block(sample, timestep=timestep_2).sample
assert attention_scores_1.shape == (1, 64, 64, 64)
assert attention_scores_2.shape == (1, 64, 64, 64)
output_slice_1 = attention_scores_1[0, -1, -3:, -3:]
output_slice_2 = attention_scores_2[0, -1, -3:, -3:]
expected_slice_1 = torch.tensor(
[-0.1874, -0.9704, -1.4290, -1.3357, 1.5138, 0.3036, -0.0976, -1.1667, 0.1283], device=torch_device
)
expected_slice_2 = torch.tensor(
[-0.3493, -1.0924, -1.6161, -1.5016, 1.4245, 0.1367, -0.2526, -1.3109, -0.0547], device=torch_device
)
assert torch.allclose(output_slice_1.flatten(), expected_slice_1, atol=1e-3)
assert torch.allclose(output_slice_2.flatten(), expected_slice_2, atol=1e-3)
def test_spatial_transformer_dropout(self):
torch.manual_seed(0)
if torch.cuda.is_available():
torch.cuda.manual_seed_all(0)
sample = torch.randn(1, 32, 64, 64).to(torch_device)
spatial_transformer_block = (
Transformer2DModel(
in_channels=32,
num_attention_heads=2,
attention_head_dim=16,
dropout=0.3,
cross_attention_dim=None,
)
.to(torch_device)
.eval()
)
with torch.no_grad():
attention_scores = spatial_transformer_block(sample).sample
assert attention_scores.shape == (1, 32, 64, 64)
output_slice = attention_scores[0, -1, -3:, -3:]
expected_slice = torch.tensor(
[-1.9380, -0.0083, -1.3771, -1.5819, 0.5209, -0.6441, -1.8545, 0.7563, -0.9615], device=torch_device
)
assert torch.allclose(output_slice.flatten(), expected_slice, atol=1e-3)
@unittest.skipIf(torch_device == "mps", "MPS does not support float64")
def test_spatial_transformer_discrete(self):
torch.manual_seed(0)
if torch.cuda.is_available():
torch.cuda.manual_seed_all(0)
num_embed = 5
sample = torch.randint(0, num_embed, (1, 32)).to(torch_device)
spatial_transformer_block = (
Transformer2DModel(
num_attention_heads=1,
attention_head_dim=32,
num_vector_embeds=num_embed,
sample_size=16,
)
.to(torch_device)
.eval()
)
with torch.no_grad():
attention_scores = spatial_transformer_block(sample).sample
assert attention_scores.shape == (1, num_embed - 1, 32)
output_slice = attention_scores[0, -2:, -3:]
expected_slice = torch.tensor([-1.7648, -1.0241, -2.0985, -1.8035, -1.6404, -1.2098], device=torch_device)
assert torch.allclose(output_slice.flatten(), expected_slice, atol=1e-3)
def test_spatial_transformer_default_norm_layers(self):
spatial_transformer_block = Transformer2DModel(num_attention_heads=1, attention_head_dim=32, in_channels=32)
assert spatial_transformer_block.transformer_blocks[0].norm1.__class__ == nn.LayerNorm
assert spatial_transformer_block.transformer_blocks[0].norm3.__class__ == nn.LayerNorm
def test_spatial_transformer_ada_norm_layers(self):
spatial_transformer_block = Transformer2DModel(
num_attention_heads=1,
attention_head_dim=32,
in_channels=32,
num_embeds_ada_norm=5,
)
assert spatial_transformer_block.transformer_blocks[0].norm1.__class__ == AdaLayerNorm
assert spatial_transformer_block.transformer_blocks[0].norm3.__class__ == nn.LayerNorm
def test_spatial_transformer_default_ff_layers(self):
spatial_transformer_block = Transformer2DModel(
num_attention_heads=1,
attention_head_dim=32,
in_channels=32,
)
assert spatial_transformer_block.transformer_blocks[0].ff.net[0].__class__ == GEGLU
assert spatial_transformer_block.transformer_blocks[0].ff.net[1].__class__ == nn.Dropout
assert spatial_transformer_block.transformer_blocks[0].ff.net[2].__class__ == nn.Linear
dim = 32
inner_dim = 128
# First dimension change
assert spatial_transformer_block.transformer_blocks[0].ff.net[0].proj.in_features == dim
# NOTE: inner_dim * 2 because GEGLU
assert spatial_transformer_block.transformer_blocks[0].ff.net[0].proj.out_features == inner_dim * 2
# Second dimension change
assert spatial_transformer_block.transformer_blocks[0].ff.net[2].in_features == inner_dim
assert spatial_transformer_block.transformer_blocks[0].ff.net[2].out_features == dim
def test_spatial_transformer_geglu_approx_ff_layers(self):
spatial_transformer_block = Transformer2DModel(
num_attention_heads=1,
attention_head_dim=32,
in_channels=32,
activation_fn="geglu-approximate",
)
assert spatial_transformer_block.transformer_blocks[0].ff.net[0].__class__ == ApproximateGELU
assert spatial_transformer_block.transformer_blocks[0].ff.net[1].__class__ == nn.Dropout
assert spatial_transformer_block.transformer_blocks[0].ff.net[2].__class__ == nn.Linear
dim = 32
inner_dim = 128
# First dimension change
assert spatial_transformer_block.transformer_blocks[0].ff.net[0].proj.in_features == dim
assert spatial_transformer_block.transformer_blocks[0].ff.net[0].proj.out_features == inner_dim
# Second dimension change
assert spatial_transformer_block.transformer_blocks[0].ff.net[2].in_features == inner_dim
assert spatial_transformer_block.transformer_blocks[0].ff.net[2].out_features == dim
def test_spatial_transformer_attention_bias(self):
spatial_transformer_block = Transformer2DModel(
num_attention_heads=1, attention_head_dim=32, in_channels=32, attention_bias=True
)
assert spatial_transformer_block.transformer_blocks[0].attn1.to_q.bias is not None
assert spatial_transformer_block.transformer_blocks[0].attn1.to_k.bias is not None
assert spatial_transformer_block.transformer_blocks[0].attn1.to_v.bias is not None
|